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ABSTRACT 

This thesis proposes schemes to provide Quality of Service (QoS) in mobile ad- 

hoc networks (MANETs). To achieve QoS, independently of the routing protocol, each 

mobile node participating in the network must implement traffic conditioning, traffic 

marking and buffer management (Random Early Drop with in-out dropping) or queue 

scheduling (Priority Queuing) schemes. In MANETs, since the mobile nodes can have 

simultaneous multiple roles (ingress, interior and destination), it was found that traffic 

conditioning and marking must be implemented in all mobile nodes acting as source 

(ingress) nodes. Buffer management and queue scheduling schemes must be performed 

by all mobile nodes. 

By utilizing the Network Simulator (NS2) tool, this thesis focused on the 

empirical performance evaluation of the QoS schemes for different types of traffic 

(FTP/TCP, CBR/UDP and VBR/UDP), geographical areas of different sizes and various 

mobility levels. Key metrics, such as throughput, end-to-end delay and packet loss rates, 

were used to measure the relative improvements of QoS-enabled traffic sessions. The 

results indicate that in the presence of congestion, service differentiation can be achieved 

under different scenarios and for different types of traffic, whenever a physical 

connection between two nodes is realizable. 
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EXECUTIVE SUMMARY 

The Joint Tactical Radio System (JTRS) acquisition program was established to 

develop a new family of tactical digital radios that will be interoperable with existing 

tactical radios, will be capable of performing wireless data internetworking, and will be 

based on a common communications system architecture. The most ambitious objective 

of JTRS is to exploit the radios to work effectively in a mobile ad hoc network (MANET) 

environment. Quality of Service (QoS), among other issues, is one of the main 

requirements to achieve the desired efficiency. 

QoS support in networks means providing the applications with enough network 

resources in order to achieve acceptable performance. Delay-sensitive applications such 

as real-time voice/video or important file transfers, should receive special treatment from 

the network compared to other low priority traffic. By doing this, the network offers QoS 

support to the high priority traffic, improving the perceived quality of the information 

contained in the traffic. 

The wireless bandwidth constraints and dynamic, multi-hop topologies of mobile 

ad-hoc networks do not allow direct application of QoS protocols widely available for 

fixed Internet Protocol (IP) and cellular networks. Because of MANETs' dynamic nature 

and bandwidth limitations, the use of any type of signaling-based protocol, such as 

Resource Reservation Protocol (RSVP), to guarantee bandwidth is not recommended. By 

adapting DiffServ function blocks and using the IntServ/RSVP's per-flow approach from 

fixed IP-network, this thesis proposes schemes to provide QoS for MANETs in a flexible 

manner. 

To achieve this objective, the mobile nodes participating in a MANET must 

implement traffic conditioning and buffer management or packet scheduling schemes. 

Traffic packets are conditioned and marked as high or low priority before being sent to 

the wireless channel. By utilizing the buffer management or the packet scheduling 

scheme in each node's buffer, the mobile nodes are able to prioritize the service of 

packets pre-defined as high priority. 

By extensive simulation under different MANET scenarios, this thesis evaluated 

the performance of the proposed QoS schemes, in terms of throughput, end-to-end delay 

xix 



and packet loss rates. Different traffic patterns, such as file transfer using a reliable 

connection service and constant and variable bit rate streams using a datagram delivery 

service, were evaluated. Results indicated that in the presence of congestion, service 

differentiation was achieved using either packet scheduling or buffer management 

schemes for all types of traffic under a variety of geographical areas (400 to 2500 km2) 

and mobility levels. High priority traffic sessions obtained relative throughput 

improvements compared to sessions with low priority. Additionally, simulation results 

indicated that in MANETs, the built-in congestion control mechanisms of the reliable 

connection service can degrade the overall throughput performance but keep the loss 

rates and the end-to-end delay at low levels. On the other hand, for real-time traffic using 

datagram service, traffic differentiation is achieved, but the absence of any congestion 

control mechanisms along with the mobile node's limited buffer size causes loss rates 

and end-to-end delays to increase significantly sometimes. 
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I.        INTRODUCTION 

A.       MOTIVATION 

The quality of service (QoS) issues in mobile ad-hoc networks (MANET) are 

better understood by taking into consideration the unique requirements of typical military 

traffic applications that demand QoS guarantees. According to [1], scalability, ease-of- 

use, mobility and QoS guarantees are requirements that must be supported by the future 

networked radio nodes in the envisioned mobile ad-hoc network environment of military 

operations. 

Presently, military systems tend to achieve QoS by relying on application- 

specific, dedicated systems [2]. For example, QoS can be provided by reserving a 

frequency channel exclusively for a certain mission-critical application. While this 

approach provides some degree of QoS, it might lead to poor utilization of scarce 

wireless bandwidth. 

Commercial systems, such as cellular telephones or mobile IP networks, obtain 

QoS capability through virtual circuit switching and by relying on the fixed 

infrastructure. In both cellular and mobile IP networks, the receiving node is typically 

one hop away. Cellular systems use a circuit switching approach in which bandwidth 

reservation is achieved with the help of explicit signaling established in the network prior 

to communication. Mobile IP communications might utilize the fixed infrastructure and 

protocols, such as RSVP, to provide resource reservation. In contrast, the dynamic nature 

of the ad-hoc multi-hop wireless networks requires more responsive protocols (with low 

overhead), and the virtual circuit approach is not attractive in MANETs. 

In addition, today's military systems need to transmit multimedia traffic, such as 

voice, video, text, and images. It is known that the specific characteristics of these types 

of traffic demand better network response to guarantee performance metrics, such as 

delay and throughput. While providing QoS guarantees to multimedia flows in fixed or 

one-hop (cellular like) wireless networks is a problem that has been addressed to some 

extent in the past, for MANETs the solutions are in early stages of research and 

development. 



The motivation behind this thesis is the need to address the QoS issues in 

MANETs in order to overcome the challenges imposed by the dynamic, rapidly 

changing, multi-hop and bandwidth-constrained wireless ad-hoc environment. 

B. OBJECTIVES 

The objectives of this thesis are to empirically analyze the QoS-related issues in 

all layers of the existing protocol stack and to propose and develop schemes and 

algorithms to provide QoS for mobile nodes in a MANET during congestion, 

independent of the routing protocol being used. The intended QoS protocols must allow 

service differentiation between high priority traffic sessions and low priority traffic 

sessions in terms of throughput, delay, and other metrics. Service differentiation is 

achieved by implementing traffic conditioning, traffic marking, Priority Queuing (PQ), 

and Random Early Drop with IN/OUT (RED/RIO) queuing disciplines in the mobile 

nodes. Since analytical (mathematical) modeling of the QoS problem is complex due to 

the dynamic behavior of MANETs, several simulations were run under different 

scenarios for different types of traffic in order to verify the performance of the proposed 

QoS schemes. 

C. THESIS OUTLINE 

This thesis is organized as follows. Chapter II presents an overview of Software 

Defined Radios (SDR) and the Joint Tactical Radio Systems (JTRS) program, which is 

the main motivator of this thesis. It also points to the increasing need for investigating 

MANET protocols for military use, especially the protocols related to Quality of Service. 

Chapter IJJ reviews the basis of mobile ad-hoc networks, emphasizing the QoS-related 

issues of each layer of the protocol stack. Chapter IV describes the challenges in 

providing QoS in MANETs. It also reviews two QoS protocols for fixed IP networks, 

highlighting the limitations and advantages of applying them to MANETs. Chapter V 

presents the schemes and algorithms investigated to provide QoS in MANETs. It 

discusses the assumptions made to implement the QoS model in MANETs. Based on 



that, the details of the algorithms utilized by the model are discussed. Chapter VI 

describes the network simulation tool and presents the details of the parameters used to 

simulate certain military scenarios. Chapter VE shows the graphical simulation results for 

different scenarios and traffic types. Chapter VIII concludes the thesis by reviewing the 

results achieved and by suggesting future extensions to the proposed model. Appendix A 

contains an example of a script file program generated by the user. Appendix B contains 

a segment of an output trace file generated by one of the simulations. Examples of node 

movement and traffic pattern files are shown in Appendix C and Appendix D, 

respectively. 
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II.       SOFTWARE DEFINED RADIOS (SDR) 

In the modern war environment, wireless mobile networks are envisioned to 

provide seamless connectivity among radio nodes and provide a communications 

backbone that can be deployed on short notice. Future radio nodes are planned to be all 

digital, hence programmable and flexible. Legacy systems typically consist of single 

band or single mode radios that have limited or no networking capability. Consequently, 

legacy systems require complex technology solutions to be integrated into networks. The 

main goal of the Joint Program Office (JPO) is to migrate the existing legacy systems to 

systems compliant with an open architecture in which each mobile node is represented by 

a software-defined radio (SDR) belonging to an integrated mobile ad-hoc network 

(MANET). 

This chapter starts with an overview of the SDR technology. Section B 

summarizes the JTRS program and introduces the Digital Modular Radio (DMR), which 

is the present US Navy effort related to the JTRS program. In Section C, we present the 

current areas of research in the context of JTRS. 

A.       OVERVffiW 

In principle, the Software Defined Radio (SDR) is a flexible hardware platform 

that integrates functional modules and software, as required, to realize a specified radio 

node operating over a defined frequency band. SDR is an implementation technique that 

increases the speed, flexibility and economy with which wireless systems and equipment 

can be developed, deployed, upgraded and debugged. In SDR, information channel 

processing is accomplished by software-programmable, hardware re-configurable 

processor elements, such as digital signal processing (DSP) chips, microprocessor chips, 

field-programmable arrays (FPGA), and other programmable devices [1]. 

By using the SDR technology, tactical radios will be able to perform more than 

one radio node function associated with a particular frequency range and waveform. SDR 

will enable emulation of numerous legacy air interfaces and will act as a bridge between 

incompatible air interfaces. This will certainly lengthen the useful life of legacy systems, 



diminish the barriers to communications among military services and allied forces, and 

ease the transition from legacy radios to SDRs. 

The ultimate objective of the SDR technology is to provide an efficient and 

comparatively inexpensive mechanism for the production of multi-mode, multi-band, 

multi-functional wireless devices that can be enhanced using software upgrades. 

Consequently, SDR provides the baseline upon which an advanced radio capable of 

meeting increasing networking, security, and life cycle cost concerns can be built. Figure 

2.1 is the functional interface diagram of a SDR [1]. 

AIR 

RF 

t Aux 
I/O 

ANTENNA 

| Aux 

BB/IF 
Digital/ 
Analog 

I/O 

RF 

encrypted 
flow 

AuJr 

I/O 

MODEM 

.Key 
I fill 

not 
encrypted 

flow 

SEC I/O 

INFOSEC 

■4 ► 

c 
■* ► 

CONTROL 

Remote Control 
Display 

User 
Control 

MSG 
Processing 

&I/0 

n Flow 
ROUTING    Control 

Multimedia 
-*■ 

Voice 
-*■ 

Data 

Network 
 ► 

I = data flow 
C = control data flow 

Figure 2.1 Functional Interface Diagram in SDR Architecture (After Ref. [1]). 

B.       JOINT TACTICAL RADIO SYSTEMS (JTRS) 

JTRS is a joint acquisition program with the Army assigned as the lead service. 

The Joint Tactical Radio System acquisition program was a result of the 1997 

Quadrennial Defense Review (QDR), which called for all the services to combine and 

integrate all tactical radio development. The JTRS Joint Project Office (JPO) is 

represented by all of the services. 

As outlined in the JTRS Mission Need Statement and the JTRS Joint Operational 

Requirements Document [1], the goal of the JTRS project is to develop a family of 



affordable, high-capacity tactical radios to provide both line-of-site and beyond-line-of- 

site Command, Control, Communications, Computer and Intelligence (C4I) capabilities 

to the war fighters. This family of radios aims to cover an operating spectrum from 2 

MHz to 2 GHz and will be capable of transmitting voice, video and data. The radios must 

be interoperable, affordable and scalable. 

One of the most critical decisions by JPO in the system engineering process of 

JTRS was to mandate the adoption of the SDR technology. SDR forms the framework 

upon which the entire JTRS design will be assembled. The essential premise behind the 

JTRS project is to leverage commercial-off-the-shelf (COTS) and software defined radio 

(SDR) technologies to produce a new family of tactical radios that are multi-functional 

with advanced wireless data networking capabilities to meet the needs of modern 

information warfare. 

Based upon an open architecture framework, JTRS allows multiple vendors to 

participate in the design of the hardware platform and the development of software 

functions. 

1.        Digital Modular Radio (DMR) 

The DMR is a Navy effort to procure a modular, scalable, software 

programmable, re-configurable digital radio to satisfy near term Ultra High Frequency 

(UHF) and Very High Frequency (VHF) communications requirements until the JTRS is 

available [3]. In a DMR, many components traditionally realized in hardware are 

implemented in software. Thus, a DMR is a SDR. 

DMR covers a frequency band from 2 MHz to 2 GHz and is capable of operating 

on four RF channels simultaneously. The RF channels can operate on any combination of 

supported modulation waveforms, and new waveforms may be added via software 

upgrades. DMR is based on an open systems architecture, which is designed to allow any 

information channel to be connected to any other information channel. This enables 

features such as bridging between RF waveforms, simulcasting and routing data between 

wireline and wireless channels [3]. 



DMR is currently under development. One of its desired features is to act as a 

line-of-site (LOS) wireless networking radio, capable of transmitting voice, video and 

data to/from any mobile node (ship, tank, helicopter, aircraft, etc.) in a MANET. These 

features are envisioned to offer automatic network formation and maintenance, automatic 

relaying to extend LOS range, independent encryption and QoS guarantees to each user 

service (voice, data, video), robustness against jamming, denial of service, and spoofing 

attempts, and robustness to random node failures. 

DMR is intended to allow for prototyping of various network algorithms and 

implementation of the eventual joint wireless standards as established by JTRS. 

C.       MOBILE NETWORK PROTOCOLS FOR JTRS 

One of the technical challenges that must be addressed in developing JTRS 

compliant implementations is the ability to network the radios in a mobile ad-hoc 

environment. In addition to supporting legacy network protocols, the JTRS architecture 

aims to support emerging wideband networking capabilities for voice, data, and video. 

The new war fighting paradigms demand mobile, flexible networks that automatically 

adapt to the war fighter's needs. These paradigms, as expressed in [1], require mobile 

networking capabilities far beyond what is possible with the currently available 

technology. As a result, JTRS networking protocols must support a variety of services, 

including automatic neighbor and link quality discovery, automatic neighbor 

reconfiguration, QoS guarantees, precedence and priority marking, and automatic 

relaying of traffic. 

JTRS has motivated the industry and the researchers to develop a networking 

structure that is more robust and responsive than the current JP protocol stack largely 

used in the fixed JP networks. The current areas of research include: routing protocols, 

quality of service (QoS), medium access control (MAC), low power design, mobility 

management, and security. The development and implementation of mobile networking 

protocols and its mapping into the technical architecture of the next generation of radios 

is one the most complex technical challenges to the JTRS effort [1]. In support of this 

effort, this thesis will address the QoS issues in MANETs. 
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III.     MOBILE AD-HOC NETWORK (MANET) 

This chapter provides the necessary background on MANETs and presents the 

details of the protocol stack required to provide QoS capability in mobile nodes. The first 

section looks at the characteristics and applications of MANETs. In the following 

sections, the MANET protocol stack is described in a layer-by-layer fashion. From the 

physical to the application layer, each section presents the main issues that must be 

addressed to provide QoS in MANETs. 

A.  BACKGROUND 

The basic idea behind mobile ad-hoc networking (MANET) was first championed 

by the DARPA packet radio networks or mobile packet radio in the 1970s. Since then, 

the technology has evolved significantly and applicable commercial radio technologies, 

such as IEEE 802.11 Wireless Local Area Network (WLAN) standard, have begun to 

appear. Previously, most of the interest in MANETs has been from the military side, and 

commercial interest is a recent phenomenon due to the demand for mobile computing [4]. 

Unlike Mobile IP or cellular networks where there is always reliance on pre- 

established fixed backbones, MANETs are intended to be autonomous and function 

independent of any fixed infrastructure, with the exception of a few possible gateways to 

provide access to a larger network or the Internet. Figure 3.1 shows the conceptual 

difference between two layers of mobile networks. 

The Mobile IP layer consists of hosts temporarily attached to routers on a fixed 

network. Hosts in this layer are one hop away from a fixed router, and their connections 

may be wired or wireless. In cellular networks, although they are not IP based, mobile 

nodes and base stations are also only one hop away from each other. On the other hand, 

the mobile nodes in a MANET do not require any routing support as they form their own 

mobile infrastructure in parallel to the fixed one. The focus of this thesis is on the issues 

related to MANETs, where mobile nodes can be separated by more than one hop and 

hosts and mobile routers are distinguished only logically. 
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Figure 3.1 Mobile IP (Mobile Host/Fixed Router) and Mobile Ad-hoc (Mobile 

Host/Mobile Router) Networks (After Ref. [4]). 

In principle, in the case of MANET, a single mobile node can simultaneously 

perform two roles during traffic exchange: host and router [5]. In the role of a host, a 

node can be the source or the destination of different types of traffic. As a router, it is 

responsible for relaying packets to the intended destinations and to maintain the routing 

paths. If a MANET has interfaces with a fixed network infrastructure, it typically 

operates as a "stub", carrying traffic that is either sourced or terminated within the 

MANET, but not permitting external traffic to "transit" through the stub network. The 

physical layer among MANET mobile nodes is assumed to be wireless, and it will be 

further explored in Section C. 

Essentially, a MANET can be treated as an autonomous system of mobile nodes 

[5]. In terms of applications, it is well suited for enabling peer-to-peer operation in 

mobile, forward-deployed military networks or for situations where it is not feasible to 

provide the necessary fixed infrastructure, like in emergency situations (search-and- 

rescue, fire fighting, etc.). The management requirements for organizing and controlling 

the network are distributed among the nodes themselves. 

Networking in MANETs presents new challenges since both the users and the 

infrastructure are in constant transition. As shown in Figure 3.2, forward-deployed 

10 



military MANETs are envisioned as relatively large, dynamic, and heterogeneous 

networks with several mobile nodes per domain. Depending on the application scenario, 

the nodes may be located in manned or unmanned aircraft, ships, trucks, cars, and 

perhaps even carried by people as handheld devices or manpacks. 

Figure 3.2 Typical MANET Military Application Scenarios. 

MANETs have four unique characteristics that differentiate them from the fixed 

multi-hop networks [4]: dynamic topology, bandwidth constraints, energy constraints and 

limited physical security. The first characteristic implies that nodes can move arbitrarily, 

changing the topology randomly and rapidly depending on the scenario. The second 

means that wireless links have significantly lower capacity than wired links, which 

intensifies congestion problems and requires special consideration for the bandwidth- 

delay characteristics. Also, the effective throughput of wireless communication channels 

is often much less than a radio's maximum transmission rate due to multiple access, 

fading, noise, and interference effects. The third refers to the fact that some or all nodes 

in a MANET may rely on batteries for energy, making power conservation a critical 

design criterion. Finally, wireless networks are generally more prone to information and 

physical security threats than are fixed, hardwired networks. Thus, security threats must 

be taken into account in the design and selection of the protocols and in the development 

of applications. 
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B.       PROTOCOL STACK 

The Internet Engineering Task Force (IETF) MANET Working Group has taken 

the lead in the development of a reference protocol stack (depicted in Figure 3.3) for the 

mobile nodes. The protocols that support mobile networking must be compatible with the 

TCP/IP suite [5]. In this thesis, the emphasis will be on the wireless side (see Figure 3.3) 

of the mobile node's protocol stack. 

The traffic can be generated in two different ways. First, it can be generated by a 

given mobile node itself. Second, it can be generated by another node (in which case this 

node is simply relaying the packet traffic) or the traffic might have originated in a fixed 

node and was passed along to a mobile node via the wired side of the protocol stack. In 

both cases, the MANET routing protocol updates the IP header fields of the packet and 

the physical address of the "Radio-Frequency (RF) Ethernet" of the next-hop mobile 

node. The packet is then forwarded to the wireless MAC protocol, which is finally sent 

via the wireless RF network interface when the channel becomes available. 

The main focus of the MANET working group is the development and 

standardization of routing protocols that reside at the network-layer. The MANET routing 

protocols must provide effective operation over a wide range of mobile network 

scenarios, support traditional connectionless IP service and react efficiently to topological 

changes and traffic demands while maintaining effective routing in a mobile networking 

context. The standardization process of the routing protocols must guarantee 

compatibility and interoperability with Internet standards in the other layers, both existing 

and under development. Backward compatibility with the traditional wired IP routing is 

an upfront requirement and extends the existing fixed infrastructure [5]. 

As displayed in Figure 3.3, the QoS issues are present across the protocol layers. 

This thesis aims to emphasize only the upper-layer (application) QoS related problems 

while highlighting how different aspects of other layers influence the QoS. The following 

sections will cover the main issues and the assumptions made in this thesis in each layer 

of the envisioned MANET protocol stack in order to create an appropriate model for 

simulation in typical military scenarios. 
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Figure 3.3 Mobile Node Protocol Stack. 

PHYSICAL LAYER 

Unlike wired channels that are stationary and predictable, wireless channels are 

time varying and do not offer easy analysis. Modeling the wireless physical layer has 

been one of the most difficult challenges of mobile radio systems design, and is often 

done empirically, based on measurements made specifically for an intended 

communication system or spectrum allocation [6]. The main issues are related to the 

propagation phenomena of radiowaves, which is dependent on several factors such as: 

frequency of operation; transmitter and receiver characteristics; antenna gains and 

coverage patterns; distance between sending and receiving nodes; height of the nodes and 

obstacles between them; terrain and environment features; and presence of noise and 

multipaths, among others. 

The weight given to each of these factors will be a function of the specific 

scenario in which the mobile ad-hoc network is established. While factors, such as 

frequency and receiver characteristics, are likely to remain constant during traffic 

exchange, others, such as noise and distance, are likely to vary with time and location. 

Several mathematical propagation models exist in the literature to address these 

issues [6]. By taking the appropriate factors into consideration, all the models aim to 

predict, with certain probability, the average received signal power of a selected traffic 

signal under a specific environment at a given distance from the transmitter. 
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At the physical layer of each mobile node device, there is a receiving threshold 

level. A traffic packet is considered to be received if its signal power is above the 

receiving threshold. However, often times, although the packet is received, it may contain 

errors due to channel noise effects (Gaussian noise, slow and fast fading, jamming, etc.), 

which lead to erroneous packet reception. 

Clearly, for tactical communications, good performance over a wide range of 

channel conditions is essential. Thus, to minimize the effects introduced by channel 

noise, several approaches can be used, such as: forward error correction (FEC) by coding 

the information (e.g., convolutional, cyclic, block codes); retransmission of the erroneous 

packets by using automatic repeat request (ARQ); special modulation schemes; and smart 

antennas at the receivers. These error-correction or error-minimization approaches are in 

general associated with link quality monitoring schemes and are applicable based on the 

status of the link. As link conditions deteriorate, FEC or ARQ can potentially be applied. 

The down side of using FEC or ARQ is the overhead in a bandwidth constrained 

environment, which can reduce efficiency (bps/Hz). 

Although it is known that the propagation phenomena of electromagnetic waves 

will have a considerable effect on the overall performance of a MANET and ultimately 

on the desirable traffic QoS, the analysis of these effects and error-correction methods are 

outside the scope of this thesis. Here, a simple physical layer propagation model based on 

the two-way reflection approach for a specific UHF frequency range (300 MHz - 3GHz) 

is adopted. 

1. Simple Physical Layer Model 

The receiving power using a free space propagation model for a single and clear 

(unobstructed) direct line-of-sight (LOS) path between two communicating mobile nodes, 

as defined by the well-known Friis formula, is given by: 

PtG,GrZ
2 

(4x)2d2L 
P'(J) = ^rT77 (3-D 
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where Pt is the transmitter power, d is the distance between the nodes, Gt and Gr are the 

transmitter and receiver antenna gains, respectively, L is the system loss factor not related 

to propagation (L > 1), and X is the wavelength. Friis equation shows that the received 

power falls off inversely to the square of the separation distance (i.e., 20 dB/decade). 

In a UHF mobile radio channel, a single direct path between transmitter and 

receiver is not the only physical means of propagation. Consequently, in most cases, the 

free space propagation model is innacurate when used alone. It is shown [6] that the two- 

ray reflection model provides a more reasonable model than the free-space model, 

especially at longer distances. Figure 3.4 displays the geometry of this model. 

Transmitter Receiver 
Pt Gt Pr Gr 

Figure 3.4 Two-way Reflection Propagation Model in an UHF Frequency Range. 

When the antenna heights (Ht, Hr) and the range (d) are such that the Earth can be 

considered flat, the grazing angle for values below 10° is given by: 

e^tariUHt+HJ/d (3.2) 

In this case, it can be shown [6] that the surface reflection coefficient approaches -1. The 

received power is then given by: 

P'{d)= J4r (3-3) a L 

For most shipboard installations, where the antenna heights are on the order of 

tens of meters and the distances are on the order of kilometers, these assumptions are 
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reasonable. From equation (3.3), at large distances (d >>^HtHr ), the received power 

falls off inversely to the fourth power of the separation distance, which is a more rapid 

path loss (40 dB/decade) than is experienced in free space. Also, it is important to notice 

that at these ranges, the received power becomes independent of frequency. 

On the other hand, the two-ray model does not give good results for short 

distances due to the oscillation caused by the constructive and destructive combination of 

the two rays (the reflection coefficient is no longer equal to -1). In this case, the first 

ellipsoid of Fresnell will not touch the surface, and hence the free-space model can be 

used. Therefore, a cross-over distance dc must be calculated so that when d < dc, equation 

(3.1) is used, and when d > dc, equation (3.3) is used, where dc is given by: 

dc = (4 7tHtHr)/A (3.4) 

where X is the wavelength. Figure 3.5 shows the behavior of the average received power 

as a function of the separation distance between the mobile nodes, according to the two- 

ray propagation model. 

For the sake of simplicity, fading, i.e., the rapid fluctuations of the received signal 

strength over very short distances (few wavelengths) or short time durations is not 

considered. When a mobile node moves away from the transmitter over larger distances 

(hundreds of meters), the local average received signal will gradually decrease and, 

moreover, will fluctuate less. It is this average signal level, not the instantaneous signal 

level, that will be predicted and used by the physical layer model in this work. 

D.   MEDIUM ACCESS CONTROL (MAC) LAYER 

The MAC layer protocols to be used in MANET are required to provide the 

following basic services for the upper layers [5]: 

• Link status sensing and neighbor discovery; 

• Reliable, in-order control packet delivery; 

• Link and network layer address resolution and mapping; and 

• Security authentication. 
16 
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Figure 3.5 Average Received Power versus Range. 

Link status sensing and neighbor discovery are closely related to the "hidden 

terminal" problem. As depicted in Figure 3.6, the broadcast nature of the wireless 

medium allows node B to communicate with both nodes A and C. However, assuming 

that the dotted circles are the ranges of each node, A and C cannot directly communicate 

with each other, i.e., they are "hidden" from each other. When B transmits to C, D cannot 

detect the transmission using the carrier sense mechanism, and hence, if D also transmits, 

a collision will occur at node C. 

A simple solution suggested in the IEEE 802.11 standard to avoid this problem is 

based on request-to-send (RTS) and clear-to-send (CTS) messages. When node B wants 

to transmit a packet to node C, it first sends an RTS to C. On receiving RTS, node C 

responds by sending a CTS message, provided node C is able to receive that packet. 

When a node, such as D or A, overhears a CTS message, it keeps quiet for the duration of 

the transfer, which is known because it is included in both RTS and CTS messages. Thus, 

the area covered by the transmission range (indicated by the vertical bars in Figure 3.6) of 
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both the sender (B) and the receiver (C) is reserved for the duration of the data transfer 

from B to C, to prevent collisions. 

Reliability in data transfer is achieved by means of acknowledgements (ACK). 

When node C receives a data packet from node B, node C sends an ACK to B. If node B 

fails to receive the ACK message, it retransmits the data packet. 

/A 
D 

AB a' Q a 
D E\ a 

Figure 3.6 Hidden Terminal Problem (After Ref. [7]). 

1.   IEEE802.il 

IEEE802.il [8] is a commercially adopted MAC layer standard for wireless 

communication within local area networks (LAN). IEEE802.il adopts a Distribution 

Coordination Function (DCF), which uses RTS-CTS exchange to overcome the "hidden 

terminal" problem and ACKs to achieve reliability. It also uses a Carrier Sense Multiple 

Access/Collision Avoidance (CSMA/CA) scheme based on dynamically selected backoff 

intervals. 

Due to the DCF algorithm, when a specific node i wishes to transmit a packet, it 

chooses a "backoff interval equal to Bt slots, where 5, is randomly chosen from the 

18 



uniform interval [0, Cw]. Cw is the so-called contention window and it is reset to a value 

Cwmin at the start, and after each successful transmission of a data packet by node i. If the 

transmission medium is not idle, node / waits until it becomes idle. While the medium is 

idle, Bi is decremented by 1 after each slot time. If the medium becomes busy while 2?, is 

non-zero, then Bt is frozen while the medium is busy. 5, is decremented again when the 

medium becomes idle. Eventually, when Bt reaches 0, node / transmits a RTS for the 

intended destination of the packet. The destination node, on receiving the RTS, sends a 

CTS packet. Finally, on receiving CTS, node i transmits the data packet. However, it is 

possible that two nodes may choose their back-off intervals such that they both transmit 

their RTS simultaneously, causing a collision between them. In this case, one of the 

nodes will not receive a CTS and will then double its Cw, will pick a new 5, uniformly 

distributed over [0, Cw], and will repeat the above procedure. 

RTS-CTS and ACK messages, although serving useful purposes, can potentially 

waste a large amount of network capacity by reserving the wireless shared medium over a 

large area (see Figure 3.6). This has a direct impact on the TCP and UDP traffic 

performance in multi-hop scenarios as will be shown later in Section D. Also, the use of 

back-off intervals to avoid congestion results in unfairness when one node backs off more 

than another node, i.e., one node may transmit several packets before the other node 

transmits its first packet. 

Several modifications of the IEEE802.11 have been proposed to address the MAC 

fairness issue. Most of them provide fairness by trying to control the bandwidth used by 

each node, which invariably causes an increase in the back-off intervals. This further 

results in a trade-off between fairness and throughput, since larger back-off intervals 

mean better fairness but less throughput. Although these modifications seem to directly 

impact the QoS of a wireless LAN, the present results are still not proved to be effective 

in MANET, where the shared nature of the wireless channel in a mobile multi-hop 

environment and the hidden terminal problem creates difficulty in determining a suitable 

definition of fairness [9]. 
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2.  Other MAC Protocols 

Reference [10] presents a comparison of other types of MAC protocols for 

wireless networks. Frequency Division Multiple Access (FDMA) is a fairly simple MAC 

protocol that assigns each network member a unique carrier frequency. There is no need 

for any channel contention, which potentially reduces delay and complexity of the 

protocol. On the other hand, the waste of bandwidth when a network member is allocated 

a frequency but has no data to send along with the scalability problem of having to add a 

receiver at each node when a new member joins the network are some of the major 

disadvantages of this scheme. 

Time Division Multiple Access (TDMA) is based on pre-assigned time slots for 

each of the network members and uses only a single carrier frequency for all nodes. In 

this case, the scalability problems are solved by reducing the transmission range or the 

data rate [10]. However, there is still waste of bandwidth if the node has no data to send 

during its assigned slot. Also, the channel access delay is potentially larger than in 

FDMA. Compared to CSMA/CA, the TDMA approach offers the most efficient means of 

communications. However, in situations where nodes are mobile, management of TDMA 

networks can be quite complex [10]. 

Demand Assigned Multiple Access (DAMA) and other variations of the basic 

TDMA/FDMA have also been proposed to mitigate some of the major drawbacks of each 

approach. 

Table 3.1 shows that as the nodes move apart, the signal-to-noise ratio at the 

receiver (Eb/N0) decreases up to a point where the bit error rate (BER) would reach 

unacceptable levels. Decreasing the data rate, if possible, allows longer ranges. From 

Table 3.1, it can be concluded that the selection of the best MAC approach to be used in a 

MANET is usually driven by an appropriate link-layer signal management algorithm that 

can control the trade-off between bandwidth (throughput) and range requirements [10]. 

In this thesis, IEEE802.il with CSMA/CA was adopted as the MAC layer 

protocol for the mobile ad-hoc network protocol stack, although variations of this 

standard or a FDMA/TDMA based protocol may be tried in the near future. It is 

important to notice that, by adopting IEEE802.il, a protocol that is tailored for small 
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areas and stub networks must be adapted for use in a network environment encompassing 

larger geographical areas. 

(kbps) lOnmi 15nmi 20nmi 25nmi 30nmi 

4608 24 (dB) 16 (dB) 8 (dB) l(dB) -6 (dB) 

1536 29 21 13 6 -1 

576 33 25 17 10 3 

64 43 35 27 20 13 

Table 3.1 Maximum Available Eb/N0 at 100W Transmitting Power (From Ref. [10]). 

E. NETWORK LAYER 

The network layer is responsible for optimal path determination and packet 

forwarding functions. Routing protocols are responsible for determining the routes in the 

network while the routed protocols (such as IP) perform the packet forwarding functions. 

The network layer (see Figure 3.3) utilizes the link status, in-order packet delivery and 

address resolution/mapping services of the MAC layer. This Section reviews the various 

routing protocols reported in the literature. Three of the MANET routing protocols being 

considered by the IETF MANET Working Group will be introduced. Optimum 

performance is the main goal of a routing protocol. To evaluate a routing protocol, we 

need appropriate quantitative and qualitative metrics [5]. 

As qualitative metrics, demand-based operation, proactive operation and sleep 

period operation are the most significant. Demand-based operation consists of letting the 

routing algorithm adapt to the traffic pattern on a need basis, in order to more efficiently 

utilize energy and bandwidth resources at the expense of increased route discovery delay. 

The proactive operation is to be considered in situations where the latency of the demand- 

based operation is unacceptable. The sleep period operation is required to guarantee 

energy savings for the nodes and hence is desirable to be included in a MANET routing 

protocol [5]. 

The most significant quantitative metrics are the end-to-end data throughput and 

delay, route acquisition time (particularly important in "on-demand" routing algorithms), 
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and efficiency (as determined by the overhead due to the control traffic). Also, it is 

important to consider the networking context to evaluate the performance of a routing 

protocol. In MANETs, the size of the network, the average number of neighbors, the 

speed with which the network topology can change, the link capacity and the traffic 

patterns (uniform, bursty, non-uniform), among others, should be considered [5]. 

As mentioned earlier, the routing algorithms and much of the protocol suite need 

to be redesigned to function efficiently and effectively in the MANET environment. 

Conventional routing protocols associated with fixed IP networks are unable to meet the 

unique requirements of a MANET due to considerable overhead and slow reaction to 

topological changes [5]. 

1.  Conventional Routing Protocols 

Conventional routing protocols use either distance vector or link-state algorithms 

to determine the optimum path to the destination [11]. 

Distance vector algorithms require each router to maintain a table with routes to 

all possible destinations along with an associated metric. Each router periodically 

produces broadcasts of this information to neighboring routers. The routers review their 

tables and neighbor updates to produce an internal routing table. The overhead associated 

with this technique is constant, regardless of the amount of topology changes (node 

movement) in the network. This type of routing is closely associated with the Distributed 

Bellman-Ford routing algorithm. A version still being used today is the Router 

Information Protocol (RIP). This protocol is table-driven and each router maintains a 

table on how to reach all possible destinations in the network. For each entry, the next 

hop/router to the destination is stored along with a metric to reach the destination. The 

metric can be based on distance, total delay, or the cost of sending the message [12]. 

Each node shares its internal information with its neighbors to achieve optimum routing. 

After a prolonged period, each node will have a consistent table to reach all other nodes. 

Link-state routing is based on Dijkstra's algorithm. Network topology information 

is again used to make routing decisions, but in this case, the algorithm is driven by 

changes in the link status of the nodes. Each router actively tests the status of its link to 
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each of its neighbors and sends this information to its other neighbors, which then 

propagate it throughout the autonomous system. Then, each router takes this information 

and builds a complete routing table. 

Both algorithms allow a host to find the next hop neighbor to reach the destination 

via the optimum (shortest) path; however, the overhead associated with these techniques 

is considerable and exhibits slow convergence in the presence of intensive topological 

changes, common in MANETs. 

Li [12], the authors conducted a simulation study to analyze RIP in a MANET and 

highlight its shortfalls. According to the study, the periodic routing updates do not allow 

RIP to scale well to large networks. The study revealed an increase in overhead directly 

proportional to node mobility. In MANETs, excessive overhead leading to inefficient use 

of the limited wireless bandwidth is unacceptable. Clearly, more responsive protocols are 

needed to meet the requirements of MANETs. 

2.  Classification of MANET Routing Protocols 

Due to different approaches taken by the researchers in the area, MANET routing 

protocols can be classified in several different ways. They can be table-driven versus on- 

demand, proactive versus reactive, symmetric versus asymmetric, and unicast versus 

multicast. 

Table-driven versus on-demand is the most common classification [13]. Table- 

driven algorithms can be interpreted as adaptations of the conventional distance vector 

and link-state techniques. The routing updates, types of tables, distributions, and 

techniques have been adapted to increase efficiency in MANET. In contrast, on-demand 

protocols attempt to reduce overhead and are more responsive to MANET by having the 

sender node dictate requirements. On-demand means that routes are created on an as- 

required basis by the sender node. This "lazy routing" approach reduces overhead by 

eliminating unnecessary periodic updates and by letting the changes in the network 

dictate overhead [13]. Current routing updates are not maintained at every node, because 

the routes are created on an as-required basis and expire with a time metric. 
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Table driven protocols are also known as proactive, i.e., the routes are determined 

independent of the traffic pattern so that when a packet needs to be forwarded, the route 

is already known and can be immediately used. On the other hand, on-demand protocols 

are reactive because routes are established and maintained only if needed. There are also 

hybrid protocols, such as Zone Routing Protocol (ZRP) and Ad Hoc On-Demand 

Distance Vector Routing (AODV), which aim to combine proactive and reactive 

behavior, according to the context. 

The routing protocols may also be classified according to the capabilities of the 

nodes. Symmetric protocols assume that all the nodes have the same responsibilities and 

capabilities. Asymmetric protocols, such as Core-Extraction Distributed Ad-Hoc Routing 

Protocol (CEDAR), may assume that the transmission ranges or the battery life at 

different nodes may differ, or only some nodes can route packets and act as leaders 

(cluster heads) of nearby nodes. 

Dynamic Destination-Sequenced Vector (DSDV), Wireless Routing Protocol 

(WRP), Global State Routing (GSR), Fisheye State Routing (FSR), Hierarchical State 

Routing (HSR), Zone-Based Hierarchical Link State Protocol (ZHLS), and Cluster-Head 

Gateway Switch Routing Protocol (CGSR) are examples of table driven or proactive 

MANET protocols. Cluster Based Routing Protocol (CBRP), Dynamic Source Routing 

Protocol (DSR), Associative Based Routing (ABR), Signal Stability Routing (SSR) and 

Temporally Ordered Routing Algorithm (TORA) are examples of on-demand or reactive 

MANET protocols. 

References [14] and [15] provide a detailed simulation performance analysis of 

AODV and ZRP, respectively. In the following Sections, we will present an overview of 

three of the most widely studied protocols, keeping in mind that no single protocol works 

well in all environments. The intention of this coverage is to provide an understanding of 

how the routing protocols affect QoS in MANETs. 

a. Zone Routing Protocol (ZRP) 

The ZRP protocol, developed by Haas and Pearlman [16], incorporates a 

localized zone approach to routing. The approach is to incorporate a hybrid protocol that 
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exploits the benefits of both a reactive and a proactive protocol. ZRP limits the scope of 

the proactive procedure to only the node's local neighborhood. Global searches for non- 

local nodes then use an efficient reactive scheme that queries only selected network 

nodes, as opposed to querying all of the network nodes. 

As shown in Figure 3.7, each mobile node has a proactive routing zone around 

it that is dictated by an adjustable zone routing radius. The zone routing radius is directly 

related to hop counts from the node. In Figure 3.7, nodes D, C, F, B, and E are in Zone A 

with a zone routing radius of 2. Routes outside the zone are determined by an on-demand 

protocol query which "bordercasts" the out-of-zone query to the peripheral nodes (D, F, 

and E), which in turn leverage the zone structure of the network to reduce query detection 

time. The intent behind this MANET routing approach is to utilize the routing knowledge 

in a localized region and obtain a route to a distant node on-demand. Intrazone Routing 

Protocol (IARP), Interzone Routing Protocol (IERP), and routing optimization are the 

main algorithms implemented within ZRP and explained in detail in [15]. 

Circles depict 
transmit radius 
of mobile node 

Node H and I form a Network Partition 

Nodes D,C,F,B,and E 
are in Zone A 

Nodes D, E, and F are 
Peripheral Nodes since 
they are two hops from 
Node A 

Figure 3.7 ZRP Example with a Zone Routing Radius of 2 (From Ref. [15]). 

b. Dynamic Source Routing (DSR) 

Broch, Johnson and Maltz developed Dynamic Source Routing (DSR) in 1998 

[17]. DSR is a pure on-demand protocol based on source routing. The source specifies 

the complete path to the destination in the packet header and each node along this path 
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simply forwards the packet to the next hop indicated in the path. DSR utilizes a route 

cache approach, where the source routes acquired by the nodes are cached (see Figure 

3.8.a). 

0.2) ~ ^  (1-3>5) 

Source (1,3,5,7) 

Destination 

a) Building route record during route discovery 

Source 

Destination 

b) Propagation of route reply with source route record 

Figure 3.8 Creation of Route Cache in DSR (After Ref. [17]). 

A source first checks its route cache to determine the route to the destination. 

If a route is found, the source uses this route. If a route is not found, the source uses a 

route discovery protocol to discover a route. In route discovery, the source floods a 

query packet or route request packet (RREQ) through the ad hoc network. Either the 

destination or another host that can complete the query from its route cache returns a 

route reply (RREP) (see Figure 3.8.b).  Each query packet has a unique identifier (ID). 
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When receiving a query packet, if a node has already seen this ID (a duplicate ID), or it 

finds its own address already recorded in the list, it discards the copy and stops flooding. 

Otherwise, it appends its own address on the list and broadcasts the query to its 

neighbors. If a node can complete the query from its route cache, it may send a reply 

packet to the source without propagating the query packet further. Any node participating 

in route discovery can learn routes from passing data packets and gather this routing 

information into its route. 

In DSR, no periodic control messages are used for route maintenance, and 

there is little or no routing overhead when a single or few sources communicate with 

infrequently accessed destinations. The on-demand, flooding-based nature of DSR's 

route discovery process eliminates the need for periodic router advertisement and link- 

status packets, which significantly reduces the overhead of DSR during periods when the 

network topology is stable. 

c.   Ad-Hoc On-Demand Distance- Vector Routing Protocol (A ODV) 

Perkins and Hoyer developed the AODV routing protocol in 1999 [18]. It is 

considered to be a hybrid protocol, because it combines features of a pure on-demand 

protocol (DSR) with a table-driven protocol (DSDV). Specifically, AODV uses the same 

features as DSR for route discovery, and from DSDV it uses the hop-by-hop routing, 

sequence numbers, periodic update packets and loop free routing [18]. 

The process of finding a path to the destination is quite similar to DSR. The 

source node first broadcasts a route request packet (RREQ) (See Figure 3.9.a). Nodes 

receiving this packet update their information for the source node and set up backwards 

pointers to the source node in the route tables. In addition to the source node's IP address, 

current sequence number, and broadcast ID, the RREQ also contains the most recent 

sequence number for the destination of which the source node is aware. A node receiving 

the RREQ may send a route reply (RREP) if it is either the destination or if it has a route 

to the destination with a corresponding sequence number greater than or equal to that 

contained in the RREQ. If this is the case, it "unicasts" a RREP back to the source. 

Otherwise, it rebroadcasts the RREQ. Nodes keep track of the RREQ's source IP address 
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and broadcast ID. If they receive a RREQ, which they have already processed, they 

discard the RREQ and do not forward it. 

Source 

Source 

Destination 

a) Propagation of route request packet (RREQ) 

I table 1 
5   /—N. 

' A 5 J . 
 ■—17 

table 
2  ,, 

table 
\   7 

Destination 

b) Path taken by the route reply (RREP) packet 

Figure 3.9 Route Discovery in AODV (After Ref. [18]). 

As the RREP propagates back to the source, nodes set up forward pointers to 

the destination (see Figure 3.9.b). Once the source node receives the RREP, it may begin 

to forward data packets to the destination. If the source later receives a RREP containing 

a greater sequence number or contains the same sequence number with a smaller hop 

count, it may update its routing information for that destination and begin using the new 

best route. 
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AODV maintains routing tables (see Figure 3.9.b) at the nodes so that data 

packets do not have to contain routes in its headers, which could increase the overhead 

when data packets are small. Similar to DSR, as long as the route remains active, AODV 

will continue to maintain the route. A route is considered active as long as there are data 

packets periodically traveling from the source to the destination along that path. Unused 

routes expire even if the topology does not change. Once the source stops sending data 

packets, the links will time out and eventually be deleted from the intermediate node 

routing tables. If the source moves, then it can reinitiate route discovery to the 

destination. If one of the intermediate nodes moves, then the moved nodes' neighbor 

realizes the link failure and sends a link failure notification to its upstream neighbors until 

it reaches the source, upon which the source can reinitiate route discovery if needed. If a 

link break occurs while the route is active, the node upstream of the break propagates a 

route error (RERR) message to the source node to inform it of the now unreachable 

destination(s). After receiving the RERR, if the source node still desires the route, it can 

reinitiate route discovery. 

d.  DSR vs AODV 

By extensive use of simulation under different scenarios, [19] establishes a 

detailed performance comparison between DSR and AODV. It presents the relative 

merits of the aggressive use of source routing and caching in DSR and the more 

conservative routing table and sequence number driven approach in AODV. 

When DSR is used in large networks (more than 20 active source nodes) the 

packet header size grows with route length. The resultant overhead implies degradation in 

performance. Also, if the network topology changes a lot (higher mobility cases), a 

cached route in DSR may become invalid, forcing the sender host to try several stale 

routes before finding a usable one. On the other hand, in small (less than 20 nodes) and 

lower mobility networks, the advantage of DSR can be significant because the above 

mentioned problems will not be in evidence and also because route caching can 

potentially speed up route discovery and reduce propagation of routing requests [19]. 
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AODV outperforms DSR, in terms of throughput and end-to-end delay in 

more "stressful" situations (higher mobility and higher traffic load). On the other hand, 

DSR outperforms AODV for low loads (less sources) with small (less than 20) number of 

nodes. 

In this thesis, simulations are developed to test the QoS issues under typical 

tactical scenarios, which are generally composed of no more than 20 nodes, and the 

relative mobility between nodes is generally low. Thus, DSR is adopted as the routing 

protocol in the proposed model. 

3.  Impact of Routing Protocol on QoS 

From the review of the main features of ZRP, DSR and AODV, it becomes clear 

that delivering QoS in mobile networks is intrinsically tied to the performance of the 

underlying routing protocols [20]. In MANET, efficient routing means efficient tracking 

of the network changes without causing too much overload in the bandwidth constrained 

environment. 

There are two known approaches that utilize routing protocols in order to provide 

QoS in MANETs. The first one tries to embed end-to-end minimum QoS guarantees 

(delay, bandwidth) in the computation of the routing algorithm. The idea is to implement 

routing integrated with a resource management scheme in which an application 

requesting a connection specifies the minimum required bandwidth. The routing protocol 

would then find the optimum route that can best satisfy that requirement. Core-Extraction 

Distributed Ad-Hoc Routing (CEDAR) is an example of use of this approach [21]. The 

second approach is presented in [22]. In this case, an extension to AODV is proposed that 

takes routing into account to satisfy QoS requirements. Extensions to the RREQ and 

RREP messages are mapped into QoS pre-defined parameters (such as maximum allowed 

delay or minimum bandwidth along a route). A node that receives a RREQ message with 

a QoS extension must be able to meet that service requirement in order to either 

rebroadcast the RREQ or unicast a RREP to the source, thus reserving resources along 

the established path. 
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While there are indications that both approaches can be successfully applied to 

provide routing with QoS in MANETs, it is also true that routing protocols should not be 

burdened with the computation associated with providing QoS functionality at the 

network layer. Rather, since routing and forwarding are two different tasks, especially in 

MANETs, this thesis prefers to separate the two issues by implementing QoS schemes 

that can easily and flexibly adapt to any given routing protocol. 

F.       TRANSPORT LAYER 

In this Section, the focus is in understanding the interaction between TCP/IP (or 

UDP/IP) and the IEEE802.il MAC layer in order to establish upper bound metrics for 

typical types of traffic in multi-hop wireless networks. These values are important 

because they impose practical limits on the application layer performance of a MANET 

under any scenario, thus serving as reference for QoS analysis. 

It is common knowledge that, in the transport layer, User Datagram Protocol 

(UDP) provides unreliable data packet delivery, while Transmission Control Protocol 

(TCP) offers reliable ordered delivery and also congestion avoidance/flow control 

mechanisms. The use of either in MANET will depend on the characteristics 

(requirements) of the traffic (voice, video, images, data) to be transmitted. In multi-hop 

wireless networks, both UDP and TCP perform in a much less predictable way than in 

wired networks. The main reason for that is the interaction with the MAC layer [23]. 

In a multi-hop configuration, such the one shown in Figure 3.10, where 

neighboring nodes are separated from each other by a distance equal to the transmission 

range, packet transmission can occur on at most one hop among three consecutive hops 

because of the contention for the shared wireless medium. Since each node has a finite 

buffer, increasing the number of hops from 1 to N results in increased delay, eventual 

packet dropping (buffer overflow) and decreased throughput, as shown in Figure 3.11. 

When the number of hops is large enough, the throughput stabilizes due to "effective 

pipelining" [23]. 
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TCP sender TCP receiver 

Figure 3.10 Fixed Multi-hop Wireless Network - String Topology, No Movement, 

Variable Number of Hops (After Ref. [23]). 
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BTCP 
Throughtput 
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Number of hops 

Figure 3.11 TCP Throughput Using 2Mbps Channel over 802.11 MAC Layer in the 

Network Shown in Figure 3.10 (After Ref. [23]). 

The result depicted in Figure 3.11 establishes an upper bound on throughput: 

N 

Throughput = ^ f(n) ■ Tin) (3.5) 
n=l 

where f(n) is the fraction of time during which the path length between sender and 

receiver contains "n" hops and T(n) is the maximum throughput (from Figure 3.11), when 

path length is "n". 

If mobility is added, the effects of link failure and route changes generally will 

cause even more degradation on TCP performance. This is because the TCP sender 

assumes that all losses are caused by congestion and thus, it reacts by reducing the 

congestion window size or by backing-off its retransmission timeout, which tends to 

decrease throughput even more (see Figure 3.12). 

However, it is important to notice that, sometimes, increasing mobility may 

improve TCP performance instead of degrading it, since at higher speeds, the network 

configuration when timeout occurs may be more favorable than at lower speeds [23]. 
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Improving the interaction between TCP/UDP and the MAC layer in order to improve 

performance is a major problem in MANETs and has been addressed by several different 

approaches that are outside the scope of this thesis. 
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Figure 3.12 Degradation of TCP Throughput due to Mobility (From Ref. [24]). 

G.       APPLICATION LAYER 

Referring back to Figure 3.3, it is in the application layer that the traffic is 

generated and received. Also, it is where the performance metrics (throughput, end-to- 

end delay, etc.) are collected, and hence the high level QoS mechanisms can be 

effectively applied. 

Each node in a MANET can potentially represent a source of different types of 

traffic. For example, a mobile node can be a battleship or a Marine soldier in the field. 

Accordingly, the types of information generated by different sources can be vastly 

different. In the battleship case, the mobile node can be a router connected to a radio on 

one interface and to a fixed, shipboard LAN on another interface, as shown in Figure 

3.13. The separation between the router and radio equipment is logical. It is likely that 

most of the functions of these blocks can be integrated into one device, say a software 

defined radio (SDR). 
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Part of the traffic generated by the different sources belonging to the shipboard 

LAN will have destinations located outside the ship. It is assumed that protocols in this 

wired network will be able to organize the type of traffic to be sent to the wireless 

medium. When forwarding or relaying packets to the wireless medium, each mobile node 

will be responsible for processing packets in order to provide QoS. This will be explored 

in the following chapters. 

phone 

Figure 3.13 Traffic Application in a MANET Mobile Source Node. 

1.  Types of Traffic 

There are basically two types of traffic that can be sent by a mobile node: 

congestion-controlled and non-congestion-controlled traffic. 

Congestion-controlled refers to traffic for which the source "backs-off' in 

response to congestion. Reliability is an important issue for this type of traffic. In this 

case, TCP and its flow control and congestion avoidance mechanisms are used. The 

nature of this traffic allows accepting a variable amount of delay in the delivery of the 

packets. Interactive traffic and transfer of large files (using FTP) are good examples of 

this type. 

Non-congestion-controlled refers to traffic for which a relatively smooth data rate 

and delivery delay are desirable. Examples are real-time video and audio. In this case, 

UDP is used because typically no retransmissions are feasible for real-time data packets 

and it is important to maintain a smooth delivery flow. The concern in this case is how 
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much the quality of the received traffic will deteriorate due to lost packets. Typically, 

real-time traffic contains a fair amount of redundancy, which implies that the loss of a 

few packets will not be noticeable. 

In summary, independent of the type, some types of traffic such as real-time 

multimedia (voice, video, image) and mission critical data, have specific quality of 

service to be provided by the network. In MANETs, where variable queuing delays and 

congestion losses are more likely, it is difficult to meet these requirements. 

H.       SUMMARY 

This chapter provided a background on MANETs and an overview of the main 

issues related to each layer of the MANET protocol stack. The models adopted to 

represent the physical, MAC and network layers were presented in detail. Additionally, 

the QoS-related topics of each layer were described. 
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IV.      QUALITY OF SERVICE ANALYSIS 

This chapter presents the theoretical basis upon which the work reported in this 

thesis has been developed. Specifically, the first section presents an overview of the QoS 

problem and the scope of the analysis. The second section describes the two most 

important QoS protocols available for fixed IP networks and discusses how they can be 

adapted for MANETs. 

A.       OVERVIEW OF THE PROBLEM 

1.   Defining QoS in IP networks 

The idea of providing quality of service (QoS) in IP networks, mainly in the 

Internet, first appeared when some types of multimedia and time-sensitive traffic started 

to be transmitted over IP networks. The Internet Engineering Task Force (IETF) 

community has realized that the so-called "best-effort" service offered by the routers 

along the path between a sender and a receiver was no longer satisfactory for these more 

demanding types of traffic. 

"Best-effort" type of service is directly related to the "first-in first-out" (FIFO) 

queuing scheme implemented in the routers. After determining the next hop to send the 

data packets, the intermediate routers forward the arriving packets in a sequential 

manner: independent of the traffic type, whichever packet arrives first is also served first. 

Also, if more packets have arrived than the routers could handle and the queue is filled 

up, newly arriving packets are dropped. Of course, in a meshed IP network, where every 

router can communicate with every other, this simple FIFO scheme had an acceptable 

performance until the need for serving bandwidth and delay-sensitive types of traffic 

arose. 

In essence, the inadequacy of best-effort service motivated the need for QoS 

support; that is, providing applications with enough network resources in order to achieve 

acceptable performance [25]. Two widely used approaches that support the provisioning 

of QoS in IP networks are resource reservation and traffic prioritization. 
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The resource reservation approach strives to establish QoS guarantees by 

reserving bandwidth for a specific type of traffic or flow. This reservation will only be 

required if the available bandwidth in the network cannot accommodate all the flows, 

which is likely to happen during congestion. This implies that every router along the path 

must be able to meet the reservation requirements ahead of time. Integrated Services 

(IntServ) and Resource Reservation Protocol (RSVP) [26] are the protocols developed to 

implement the resource reservation capability for fixed IP networks and they will be 

further explored in Section B. 

Traffic prioritization techniques provide different packet forwarding treatment to 

different types of traffic. In order to achieve this, the routers in the network establish 

priority differentiation under the assumption that high priority traffic will be served first. 

Also, packets belonging to the high priority traffic are dropped less than those of the low 

priority traffic. Differentiated Services (DiffServ) [27] is the protocol used to provide this 

capability and its details will be discussed in Section B. 

2.   Challenges in MANETs 

Providing quality of service (QoS) in a MANET environment is even more 

challenging compared to the fixed IP networks. Network resources in the wireless 

channel are quite limited: available channel capacity is low and the channel quality is 

poor. As a consequence, providing QoS under these conditions is a difficult task. The 

previously mentioned schemes of resource reservation and traffic prioritization can be 

applied to MANETs as well. Nevertheless, close attention must be paid to the bandwidth 

demands and processing needs. 

As seen in the previous chapter, the time-varying, multi-hop nature of the path 

between the sender and the receiver, associated with the MAC contention for the shared 

medium impose strict bounds on the achievable throughput (i.e., link capacity). The 

dynamics of the network, manifested by the frequent variations in the network topology 

and poor quality of the routes linking the communicating nodes, make a virtual-circuit 

signaling-based resource reservation approach somewhat unattractive. In addition to that, 

the dynamic wireless links are prone to errors due to impairments in the channel, such as 
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fading, jamming, Gaussian noise and obstacles. Error correction coding schemes are 

sometimes used to mitigate the effects of the channel impairments. However, the error 

correction schemes result in overhead and further reduce the available bandwidth. 

Taking the above-mentioned limitations into account, the question that arises is: Is 

it possible to provide QoS guarantees 100% of the time in MANETs? The answer is 

obviously negative and a simple example can corroborate it. At a given time, let two 

communicating nodes reach a "stable" state in which the channel is error-free and the 

relative path between them does not change. In a MANET, it is probable that a brief 

instant later, this "stability" would be compromised due to the presence of random errors 

or the mobility of any of the nodes along the path. As a result, the QoS guarantees 

established during the "stable" period would be no longer possible. First, the nodes would 

try to re-establish the path by extensive use of signaling, and then try to correct errors by 

using some kind of channel coding. Both solutions would involve a large number of 

control packets (overhead) in the channel, thus increasing contention, reducing the 

available bandwidth, and decreasing the overall system throughput. 

Since the characteristics of MANETs extensively limit the robustness of the 

possible solutions, it is clear thai flexibility must be the primary attribute of a protocol in 

order to support QoS in MANETs. Although strict QoS guarantees are not possible at all 

times, the protocol should be able to provide better forwarding treatment for high priority 

(mission-critical) traffic whenever there is an established route between the 

communicating nodes. On the other hand, by emphasizing flexibility, it is important to 

notice that the protocols in the other layers of the stack are allowed to be loosely coupled, 

which often is contrary to the extreme need for efficiency in MANETs [28]. This was 

evident from the discussion in the previous chapter, where it was mentioned that the 

MAC algorithm and the routing protocol, if coupled together, would provide better QoS 

support. Despite the fact that a solution that tightly couples all the inter-layer protocol 

functions in a logical fashion is desirable, this thesis adopts a more flexible approach as 

there are still a lot of open, unresolved issues in each MANET protocol layer. 
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B.       INTSERVANDDIFFSERVINMANETS 

' QoS support is especially important during network congestion, which is likely to 

happen in MANETs frequently because of the limited available bandwidth. There are 

situations, however, in which bandwidth constraint is not a limitation and QoS guarantees 

are not needed. For example, if there is not enough traffic to exhaust the resources 

causing congestion, there is no need to provide QoS. 

Keeping the above in mind, there is a number of solutions to the problem of 

congestion management [25]. One very simple solution is to over-engineer the network 

such that there is no need to have a contention for resources. Unfortunately, in MANETs, 

this solution is not applicable in general. Another approach is based on reserving end-to- 

end resources along the path of a flow related to a specific application. A third method is 

based on identifying data packets carrying high priority (real-time or mission critical) 

application data and giving them special forwarding treatment in the nodes along the 

path. Integrated Services (IntServ) and Resource Reservation Protocol (RSVP) [26] 

implement the second approach while the third method is realized by Differentiated 

Services (DiffServ) [27]. 

The second and third approaches have been successfully applied to fixed IP 

networks, and they both provide better performance in terms of throughput, delay and 

service differentiation than the best-effort model. Thus, understanding how the QoS 

features provided by these protocols in fixed IP networks could be adapted for MANETs 

is the key before presenting the details of the QoS schemes proposed in this thesis. 

1.   Integrated Services (IntServ) with RSVP 

Integrated Services (IntServ) can be defined as a virtual circuit mechanism, which 

strongly relies on the RSVP signaling protocol to setup and maintain the virtual 

connections (see Figure 4.1) corresponding to each flow (i.e., application session between 

sender and receiver). All routers along the path must be RSVP enabled and must apply 

resource management schemes to support the QoS specifications of the connection. Also, 
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the so-called soft states established in each intermediate router must be refreshed 

periodically in order to maintain the connection [26]. 

RSVP signaling is illustrated in Figure 4.1. The source initiates a PATH message 

that specifies the traffic characteristics of the source's media flow. If the receiver can 

support the specified traffic flow, then it returns a RESV message to the source. The 

intermediate routers can either accept or reject the QoS reservations (buffer capacity or 

link bandwidth) contained in the RESV messages. 

Sender node PATH PATH □ 
sends PATH periodically     RESV 

describes application 

Router 
RESV 

soft-state RESV 

Data Flow with end-to-end QoS guarantees 

PATH 

Router 
RESV "*- 

soft-state RESV 

Receiver node 

□ 
Lm.u.UU 

decides making 
reservation 

Figure 4.1 RSVP Protocol (After Ref. [29]). 

The per-flow granularity provided by IntServ tends to cause scalability problems 

in fixed IP networks since the amount of state information that must be kept by each 

router along the path increases proportional to the number of flows. This problem is less 

likely to happen in the current MANETs since the limited bandwidth generally limits the 

number of flows in the network. However, the use of a pure RSVP-like signaling scheme, 

which requires extensive use of control packets (overhead) to maintain the routes, is not 

practical in MANETs due to the frequent changes in topology and link capacities [20,30]. 

2.   Differentiated Services (DiffServ) [27] 

Differentiated Services (DiffServ) uses relative-priority schemes in order to 

provide a different packet forwarding treatment (service) for heterogeneous application 

requirements or end-user expectations. Unlike IntServ, no signaling is necessary. Instead, 

a service level agreement is generally established prior to the traffic exchange, so the 

actions to which the traffic streams will be submitted are pre-defined. The traffic streams 

in this case are no longer micro flows, but instead, they are grouped forming "aggregates" 
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of multiple flows. As shown in Figure 4.2, traffic entering a QoS-enabled fixed IP 

network is first classified, and then conditioned at the boundary of the network in an 

ingress router or ingress node. 

Classification consists of distinguishing a packet based on some identifying field 

present in the header of the packet. For example, the identifying field can be formed 

using the flow ID field in IP version 6 or the type of service field in IP version 4 (named 

DS field in DiffServ), or even a multi-field composed of source/destination addresses and 

source/destination ports. The classifier, based on one of these fields, "steers" the packets 

to a logical instance of a traffic conditioner (see Figure 4.2). 

packet flow- 

meter 

classifier marker 
shapper/ 
dropper 

traffic conditioning 

Figure 4.2 Traffic Classification and Conditioning in DiffServ. 

The traffic conditioning function may contain three main elements: meter, marker 

and shaper. All of them need not to be present. By metering, a traffic stream is compared 

against a specific pre-defined traffic profile. The resultant state of the meter (IN or OUT 

profile) defines the actions to be performed by the marking and shaping blocks. For 

instance, packets may be marked as "premium" (or simply high priority) or "best-effort". 

Shaping can be used to adapt (or drop) a traffic stream, making it conforming to a 

specific traffic profile. 

In fixed IP networks, routers located at the boundary of a network (ingress 

routers) execute classification and conditioning. After conditioning, routers in the interior 

part of the network provide the appropriate queuing discipline or scheduling to guarantee 
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the differentiated forward treatment (named per-hop-behavior or PHB) for the now 

distinct types of traffic. The combination of these processes is illustrated in Figure 4.3. 
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Figure 4.3 Overall Results of DiffServ Protocol. 

There are specific points that need to be addressed in MANETs relative to 

DiffServ. The relative-priority mechanism and the absence of any kind of signaling make 

DiffServ a flexible approach for use in MANETs. Originally, DiffServ was developed for 

fixed IP networks with the basic idea of softening the hard signaling requirements of QoS 

models like ATM and IntServ/RSVP. 

Also, unlike in fixed IP networks, MANET nodes may execute a router/switch 

and host function. The dual role of MANET nodes makes the distinction between ingress 

nodes and interior nodes impractical. DiffServ is lightweight in interior routers as it 

avoids the per-flow states and signaling at every hop that is common in MServ/RS VP. In 

MANETs, it is important to keep the QoS protocol lightweight in the nodes acting as 

routers. Since most MANET nodes serve the roles of router and host, the processing 

available for QoS service is limited. The power budget of MANET nodes is another 

concern. Requiring the intermediate nodes to carry out additional processing could lead 

to draining of the battery power [30]. 

In the DiffServ architecture for fixed IP networks, currently two types of service 

are defined: Expedited Forwarding (EF) [31] and Assured Forwarding (AF)[32]. EF is 

supposed to provide low loss, low latency, low jitter and end-to-end assured bandwidth 
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like a "virtual-leased-line". Obviously, as in IntServ/RSVP, this virtual-leased line is 

quite difficult to implement and maintain in a MANET due to its dynamics. On the other 

hand, AF is a means of providing different levels (probabilities) of forwarding assurances 

for IP packets belonging to an application. The assurances can, for example, be translated 

as expected (not fixed) throughput. As implied in [32], AF is not required to provide 

specific QoS guarantees. Therefore, since it is not easy, if not impossible, to provide 

precise quantitative QoS in MANETs (given its constraints), AF has a potential 

application in MANETs. 

With all the flexibility and desirable features, the use of DiffServ in MANETs is 

still not straightforward. It is desirable to incorporate, for example, the flow granularity of 

IntServ/RSVP and to make some modifications in DiffServ function blocks. In the 

following chapter, the details of these modifications, leading to a. flexible QoS model, are 

presented. 

C.       SUMMARY 

In this chapter, the main concepts related to QoS in a fixed IP network were 

presented and then extended to the MANET environment. In addition, we described two 

QoS protocols available for fixed IP networks and discussed how they could be adapted 

for MANETs. 
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V.       QUALITY OF SERVICE IMPLEMENTATION 

The QoS model adopted in this thesis is based on the work presented in [30] and 

[33]. By adapting the fixed IP-network's DiffServ function blocks (Figures 4.2 and 4.3) 

and using the IntServ/RSVP's per-flow approach, the model aims to provide QoS for 

MANETs in a flexible manner. Li this chapter, details of the three main mechanisms - 

traffic conditioning, buffer management, queue scheduling - used to achieve the goal of 

providing QoS in MANETs are presented. 

First, it is important to mention that although a MANET can be treated as an IP 

packet switched network, its dynamics do not allow an exact analytical model for the 

queuing schemes. Traffic flows and service times do not necessarily follow a Poisson or 

exponential distribution. Also, partitioning/merging of traffic and non-independent 

service distributions make a mathematical analysis based on queuing theory an infeasible 

approach [24]. Thus, this thesis will strongly rely on simulations to evaluate the 

performance of the proposed QoS model. 

The aimed flexibility of the QoS model is achieved with simplicity of the 

algorithms and transparency with respect to other layers of the protocol stack. As 

previously discussed, flexibility is a highly desired characteristic because not only several 

underlying protocols (MAC and routing) are still under research, but also 

power/processing constraints of mobile nodes generally require lightweight algorithms. 

Thus, the general idea is to define a traffic profile for each traffic session (or flow) and to 

apply mechanisms that benefit traffic in conformance with those profiles. As a traffic 

flow is generated in the source node (before entering the network), packets are 

conditioned and then marked (tagged) as being "/A/" or "OUT'. If congestion occurs, 

each node will preferentially drop packets that are tagged as being "OUT'(buffer 

management) or serve packets that are tagged as being "IN" (priority scheduling). 
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A.       TRAFFIC CONDITIONING 

Traffic conditioning is the process in which the traffic characteristics are altered 

in order to conform to pre-defined requirements [27]. Traffic conditioning is different 

from DiffServ in which the nodes (routers) along the path have pre-established and fixed 

roles (ingress, interior, destination). In MANETs, the nodes will have dynamic roles, 

which means that a node acting as an ingress node during one connection may be an 

interior or destination node in another connection [30]. As depicted in Figure 5.1, Node 2 

is an interior node in Connection 1, a destination (sink) node in Connection 2 and an 

ingress (or source) node in Connection 3. 

connection 1: nodel to node6 
connection 2: node3 to node2 
connection 3: node2 to node? 

Figure 5.1 Example of Dynamic Roles of Mobile Nodes in MANETs. 

In Figure 5.1, in the role of an interior node, Node 2 must act like a DiffServ 

interior router, receiving and forwarding data packets to the next-hop node according to a 

pre-defined queue scheduling/management scheme derived from the Type of Service 

(TOS) field in the IP header of the packet. As a destination node, it must act as a receiver 

or sink, receiving traffic and sending acknowledgments if TCP is used. Finally, as an 
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ingress (source) node, Node 2 must generate traffic, and is also responsible for 

implementing traffic conditioning. 

As shown in Figure 5.2, traffic conditioning is composed of four main elements: 

meter, traffic profiler, marker and shaper/dropper. Each block will be described in the 

following sections. 

<mm> 
R tokens/sec        Token Bucket 

traffic profiler 

€S> token 
I     | packet 

B 
(bucket size) 

packet flow    , ,   
 ►    □ CD CD □ 
packets/sec 

€3> 

'meter"\<C/ ß 
••► < Conformance 

test 

marker 
JN 

I OUT 

/* 

shaper/ 
dropper 

sink dump 

Figure 5.2 Block Diagram Illustrating Traffic Conditioning at an Ingress (Source) Node. 

1.   Metering and Traffic Profiler 

The meter function block is responsible for comparing the temporal 

characteristics of a traffic flow (traffic stream) to be sent by a source node with a pre- 

defined traffic profile implemented by a token bucket algorithm (see Figure 5.2). 

A token bucket traffic profiler consists of two parameters: a token rate Rt and a 

bucket size Bt. Rt specifies the continually sustainable rate or average target data rate to 

be supported for flow "f. Bt specifies the amount by which the data rate can exceed Rt 

for short periods of time. During any time period T, the amount of data sent cannot 

exceed Rt xT + 2?,-. Over the long run, Ä, will be the average data rate (or target rate) 
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allowed by the token bucket. However, if there is an idle or slow period, the bucket 

builds up, so a traffic rate of at most Bt above the stated rate can be accepted. Thus, Bt is a 

measure of the degree of burstiness of the data flow "/" that is allowed [33]. 

The metering and the conformance test of Figure 5.2 are implemented according 

to the pseudo code in Figure 5.3. The logic behind the algorithm is simple. If a packet 

arrives and there are insufficient tokens available, then the packet is violating the average 

target rate for this flow. The treatment for such packets can be either marking them as 

OUT or sending them to the shaper/dropper (to be explained in a later section). 

Initialize Tokens = Bucket_size(Bi) and Ri=token_generation_rate for flow i 

Function getjipdate Jokens /*gets present number of tokens in the bucket*/ 

Tokens - Tokens + (present_time - lastupdatejime) */?, 

If Tokens >2?,, then Tokens=Bj /*bucket cannot overflow*/ 

Function consume Jokens /* consume tokens of the bucket*/ 

Tokens = Tokens - packet_size 

Initialize Metering and Conformance Test 

get jipdate Jokens 

if (Tokens >pktsize) I* if there are enough tokens in the bucket*/ 

iph->prio = IN; /* mark conforming packet as /TV, associated with high priority*/ 

consume Jokens; 

else /* if there are not enough tokens */ 

iph->prio =OUT;/*maik non-conforming packet as OUT, associated with low priority*/ 

or sent to shaper/dropper 

Figure 5.3 Pseudo Code of Meter/Marker Block. 

At this point, it is essential to realize that the parameters (token rate "R" and 

bucket size "B") defining the traffic profile for a specific flow " / " should not be fixed 

because in MANETs, the available bandwidth of a wireless link between nodes will 

certainly vary with time [34]. In fact, the number of hops, among other parameters (such 

as routing load, noise and propagation phenomena), imposes an upper bound on the 

throughput (or bandwidth capacity). Mobility causes variations in the number of hops, 
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which causes variations in the maximum available link bandwidth (see Figure 3.10), 

hence causing variations in the maximum allowed throughput of traffic that can be sent 

by a source node. Since the traffic to be sent is confronted (by a meter) with a traffic 

profile in order to check for conformance (IN or OUT conformance), it is not prudent to 

keep the profile parameters fixed. In order to keep the traffic profile adaptive to the 

dynamics of the network while keeping the differentiation between traffic flows 

predictable, the token bucket profiler parameters (Rb Bi) must be defined as a function of 

the relative percentage of the link capacity, i.e., 

Rt = Ttx f(Nh)xR, 1 < i < N (5.1) 

Bi = LiXf(Nh)xB, l<i<N (5.2) 

where R{ is the token generation rate, Bt is token bucket size, Tt and L, are parameters 

related to the relative target rate of the ith flow,f(Nh) returns the available bandwidth as a 

function of the number of hops (Nh) between sender and destination nodes at a specific 

time, and R and B are proportionality constants representing other factors (such as routing 

load, noise, fading, etc.). Assuming a quasi-static (no relative mobility) scenario, we can 

set R = B = 1, leaving the number of hops as the main driving factor for setting the 

profiler parameters. 

It is reasonable to assume that the required up-to-date information about the 

number of hops between sender nodes and destination nodes can be provided by the 

routing protocol adopted in the MANET. The meter block and its associated meter traffic 

profiler can then utilize the up-to-date information about the number of hops to regulate 

the allocation of the available network bandwidth among individual flows. 

In summary, the meter and traffic profiler blocks do not provide a strict guarantee, 

but rather an expectation of the service that will be provided to a flow during times of 

congestion [33]. Thus, the key detail provided by this QoS model is that it permits 

different users (traffic flows) to have different expectations. Simulation results for traffic 

conditioning are presented in Chapter VII. 
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2.   Marking 

A marker basically executes a tagging algorithm associated with the results 

obtained by the traffic meter. Generally, the distinction between marking and metering is 

much more functional than logical since one routine can execute both functions at the 

same time (see Figure 5.3). 

The idea of using tags to identify packets is not exclusive to DiffServ. ATM, for 

example, uses a similar concept by marking the so-called Cell Loss Priority (CLP) bit. In 

the literature [27], the Type of Service (TOS) field in the IP header embedding this tag is 

usually named DiffServ Code Point (DSCP). This thesis adopts the same nomenclature. 

IP packets conforming to a traffic profile have their header DS (DiffServ) field 

marked as IN (meaning in conformance). Similarly, non-conforming IP packets are 

marked as OUT. The idea of marking the packets at the ingress nodes, as part of 

conditioning, attempts to classify and facilitate the identification and further processing 

(forwarding) of the packets by the intermediate nodes acting as routers. 

The result of marking or tagging gives the intermediate mobile nodes a better 

handle on how much of the traffic, at any instant, is "valued" traffic, and how much is 

just "opportunistic" traffic for which a more relaxed service can be tolerated. In other 

words, the marking process is directly associated with establishing priorities for the 

packets. Clearly, the /N packets have higher priority than OUT packets. 

3.   Shaping/Dropping 

As depicted in Figure 5.2, after the conformance test, packets marked as OUT can 

be made to conform or can be dropped even before transmitting. The idea here is to 

police the traffic flow so that a flow known to exceed the allocated capacity can be either 

dropped early or adjusted (shaped) to fit in. The shaping/dropping function can also be 

executed by a token bucket-like algorithm. 
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B.       BUFFER MANAGEMENT 

1.  Random Early Discard (RED) 

Random Early Discard, Random Early Drop, or Random Early Detection are 

equivalent names for the same algorithm. The idea behind RED is quite simple: packets 

are randomly dropped with increased probability as the queue size grows. In order to 

maintain the network in a region of low delay and high throughput, RED's main goal is 

to avoid congestion by detecting it early rather than reacting to it [35]. 

In a simple FIFO (first-in first-out) algorithm, queues drop all packets at the tail 

of the queue when it reaches its size limit. This implies that by only dropping newly 

arriving packets, FIFO discarding algorithm is biased against burst sources as compared 

to smooth sources with the same average traffic. If interactive traffic, which in general is 

a typical bursty traffic, is assumed to be largely used in MANET, this behavior of FIFO 

should be avoided. 

Proceeding further with a FIFO scenario, typically TCP sources use packet drops 

as an implicit signal of network congestion and reduce their information transmission rate 

according to a "fast-recovery" or "slow-start" algorithm [36]. With a traffic burst, queues 

fill up quickly, and several packets are dropped. The likely result is that many TCP 

connections are affected and enter the "fast-recovery" or slow-start" algorithm. This 

causes a severe drop in network traffic, so the network could be unnecessarily 

underutilized for a period of time. Because many TCP connections potentially entered 

"slow-start" at about the same time, they will also come out of this "lazy" state at the 

same time by ramping up their sending rates, which results in another big queue build up, 

and the above cycle repeats. This cyclic behavior is known as "global synchronization" 

[36] and its effect tends to be more harmful in a bandwidth constrained environment, 

such as in MANETs. 

One possible solution for this problem is to increase the buffer (queue) size. As 

these larger buffers fill up, the delay suffered by all connections would increase 

dramatically [29], indicating that increasing the queue size may not be acceptable to 

many applications. 
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RED aims to minimize the effects of global synchronization by utilizing a packet- 

discard strategy, which discards incoming packets before the queue is completely filled 

up (see Figure 5.4). It basically anticipates the onset of congestion (congestion 

avoidance) and "tells" one application session at a time to slow down. Then, by 

measuring the effect of the first "slow-down", RED determines if it is necessary to slow 

down another connection. 

To achieve the above objective, the RED algorithm defines a minimum queue size 

threshold (0min), a maximum queue size threshold (6Ut), and a time-based average queue 

length (Lav), as shown in Figure 5.4. If Lav < G^, then packets are queued and no packets 

are dropped (normal stage); if Lm > 6,^, then all packets are dropped (congestion control 

stage); and finally, if &„•„ < Lav < O^, then packets are randomly dropped with linearly 

increasing probability proportional to Lav (congestion avoidance stage). The purpose of 

using an average and not the actual queue size is to filter out transient congestion at the 

node router. Also, the optimal values for 6L, and 6^ depend on the desired average 

queue size. If the typical traffic is fairly bursty, then 5L, must be correspondingly large to 

allow the link utilization to be maintained at an acceptably high level [35]. 

mobile node RED queue 

^ ~u_ 

17- muL 

drop 

Figure 5.4 RED Queue Management Scheme. 
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The overall result of this probabilistic queue management scheme is that it 

gracefully instructs some TCP sources to reduce their sending rates so that an interior 

node's queue does not overflow. This allows the node to support new TCP connections, 

handle periodic bursts of data, and maintain high network utilization during periods of 

congestion, which is highly likely in MANETs. 

2.  Random Early Discard (RED) with IN/OUT (RIO) 

The idea of RED with RIO is an extension of the RED concept and hence utilizes 

the same mechanisms. In RIO, there are two sets of parameters, one for IN packets and 

the other for OUT packets. The parameters 0*,, fl^and P^ define the normal 

operation [0, 0^), congestion avoidance [6^,0^), and congestion control [0^, °°) 

stages for the IN packets. For the OUT packets,  0™   ,  0°^  and  P^ define the 

corresponding phases [33]. The algorithm works in a similar fashion to RED and is 

displayed in pseudocode in Figure 5.5. 

As a packet arrives at a mobile node, the node checks the packet's tag. Then, the 

node calculates the average queue length for the IN packets (Z£) and the average total 

queue size for all arriving packets (IN and OUT). The probability of dropping a packet 

will then depend on which phase of operation the node is operating in. Figure 5.6 shows 

that during periods of congestion, nodes adopting this buffer (queue) management 

scheme will preferentially (with a high probability) drop OUT packets. 

The packet scheduling (serving) scheme in the queue is FIFO (first-in first-out), 

meaning that the serving and dropping order of the packets in the queue will not be 

changed as shown in Figure 5.7. At this point, it should be clear that in MANETs, routing 

control packets must always have the highest priority and must be inserted at the head of 

the queue in order for them to be not dropped. This is to prevent routing perturbations or 

disruption of routing management functions, which are very important in MANETs due 

to mobility of the nodes. As a consequence, by using RED/RIO, the MANET nodes will 

offer different levels of service based only on differentiated probability of packet 

dropping, but still keep the FIFO serving (scheduling scheme). 
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For each packet arrival 

If it is an IN Packet 

Calculate the average IN queue size = lln
av; 

Calculate the Probability P"1; 

Drop packet with probability Pin; 

Else if III > 0^ Drop packet 

Calculate the average total queue size =U°af; 

If it is an OUT packet 

if e°i < L'T < e. total ■tout 
max 

Calculate the Probability P°ut; 

Drop packet with probability P°ut; 

Else if LZal > 0Z Drop packet 

Figure 5.5 RED/RIO Algorithm (After Ref. [33]). 

drop 

e: tout 
min e° run 

queue length 

Figure 5.6 RED/RIO Queue Dropping Scheme. 
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Figure 5.7 Arrangement of Packets in a Mobile Node's Queue Using RED/RIO 

Management Scheme (After Ref. [37]). 

C.       QUEUE SCHEDULING WITH PRIORITY 

As previously mentioned, RED/RIO buffer (queue) management provides service 

differentiation (QoS), without changing the basic FIFO scheduling algorithm. This means 

that RED/RIO can be seen as an intelligent discard policy, instead of a packet-scheduling 

scheme. Scheduling means determining the order in which the queued packets are 

transmitted. There are several scheduling methods in the literature that are distinguished 

by the way the decisions to select a packet to transmit are made. Priority Queuing (PQ), 

Class-Base Queuing (CBQ) and Weighted Fair Queuing (WFQ) [38] are representative 

examples. All of them aim to provide some sort of QoS by providing different service 

(forward) treatment to different types of traffic. 

This thesis adopted the PQ method, which provides QoS by implementing 

precedence-ordered queue service or simply priority queuing. When a packet is selected 

for output on a logical link, the packet of highest precedence that has been queued for 

that link is sent. 

1.  Priority Queuing 

The main purpose of implementing a priority scheduling in the queues of 

intermediate and source (ingress) nodes is to create different priorities to serve users with 

different needs. When a packet with a higher priority arrives, it is inserted ahead of all 
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packets with lower priority. Thus, higher priority packets in the queue will always be 

served first. In the case of network congestion, the last packet in the queue will be 

dropped. Consequently, the result of using this algorithm is to build up a queue of lower 

priority packets, which will cause packets in this class to be preferentially dropped due to 

queue overflow as shown in Figure 5.8. 

EH? 

tm 

4SP WA v/// % » ///. v// '/A H v/, '//, /// 
[SK5 

m 1 i 1 
PI W? m ̂ ^ arriving packets 

from different flows 

H    IN packet     ■   OUT packet      Ü    Routing packet 

Figure 5.8 Arrangement of Packets in a Mobile Node's Queue Using a Priority 

Scheduling Mechanism (After Ref. [37]). 

In the mobile nodes, there will be no separation of traffic from different flows into 

different queues. The packets of all flows are placed in just one queue. Since different 

flows can have very different profiles, this will result different quantities of "IN" packets 

in the service queue. This attribute helps to reduce the processing time in each node 

because they do not need to keep track of the status of several different queues. Besides, 

as pointed out in [33], separate queues for different types of packets will likely cause 

packet reordering, resulting in performance degradation in TCP or jitter in real-time 

traffic. 

D.       SUMMARY 

In this chapter, details of the three main schemes - traffic conditioning, buffer 

management, queue scheduling - used to achieve the goal of providing QoS in MANETs 

were presented. 
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VI.      SIMULATION 

The Simulation software used in this thesis was the Network Simulator 2 (NS2), 

version 2.1b6 running on a Linux RedHat 6.2 platform. Although there were other 

popular software packages available to simulate wireless networks, NS2 was, at the time 

of this work, the only tool that embedded four of the main MANET routing protocols 

(DSDV, DSR, AODV and TORA) proposed by the IETF. Also, NS2 is freeware software 

that can be downloaded on the Internet from the University of California (UCB) at 

Berkeley. Thus, to achieve a common ground in evaluating and comparing MANET 

protocol (not only routing) performance results, researchers recently agreed on the 

adoption of NS2 [39]. In this chapter, the main contributions of scripts and functions 

added to the NS2 structure to allow simulations of QoS in wireless ad-hoc networks will 

be presented. 

A.       NETWORK SIMULATOR 2 (NS2) [40] 

NS2 version 2.1b6 was created by the Virtual InterNetwork Testbed (VINT) 

project funded by Defense Advanced Research Projects Agency (DARPA). The VINT 

project is a collaborative project that includes the University of California at Berkeley 

(UCB), University Southern California (USC)/Liformation Sciences Institute (ISI), Xerox 

Palo Alto Research Center (PARC) and the Lawrence Berkeley National Laboratory 

(LBNL). The purpose of this on-going project is to build a network simulator that allows 

the study of scale and protocol interaction in the context of current and future network 

protocols. The simulator is object oriented, written in C++ programming language, and 

uses Object Tool Command Language (OTcl) as a command and configuration interface 

(interpreter). 

Basically, NS2 offers an open platform where users can manipulate the existing 

C++ classes and OTcl files and also add new functions according to their simulation 

needs. Following this idea, this thesis used and adapted several C++ and OTcl functions 

already existing under the NS2 architecture and manipulated other functions made 

available by different researchers, mainly from [30] and [33]. The main simulation goal 
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was to properly integrate these functions and make the necessary changes in order to 

provide the desired QoS capabilities for the MANET scenarios under study. Close 

reproduction of real case military scenarios and types of traffic was also one of the major 

concerns that drove the simulation set-up parameters and the manipulation of the C++ 

and OTcl functions. 

The Tool Command Language (Tel), which is a high-level transcript language, is 

used in NS2 to encapsulate the actual instance of the OTcl interpreter. Tel scripts, written 

by the user, are then called by the simulator and provide the links to access and 

communicate with functions defined in the OTcl interpreter [40]. 

In the simulation of MANETs, the user first generates two Tel scripts: one 

defining the traffic pattern to be associated with the source nodes and another 

characterizing the mobility scenarios of the nodes. Then, with a third Tel script 

containing the main program, the user can completely define each of the mobile nodes. 

That is, the protocol stack - physical, MAC, routing and queuing parameters and 

algorithms - associated with each mobile node is configured before running the 

simulation. 

Figure 6.1 depicts an overview of how a simulation is performed in NS2 from the 

user input in the form of Tel scripts for data processing. The Tel script is used to bridge 

the OTcl script created by the user with the C++ code resident in the NS2 simulator in 

order to implement the different layers and algorithms of the protocol stack and the actual 

simulation. The details of the interaction between Tel, OTcl and C++ in NS2 can be 

found in [40] and are outside the scope of this thesis. 

OTcl script 
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(mobile node 
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Figure 6.1 Simulation Flow in NS2. 
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The NS2 simulator performs the simulation and creates an output file containing 

results of the simulation. In the Tel script, the user can select the granularity of the output 

trace file information by choosing the level (MAC, routing or application layer) of tracing 

to be executed. The user can also add the network animator (NAM) to the Tel script to 

view the movement of the MANET nodes during the simulation time, which helps in the 

debugging process. Finally, the output trace file is parsed using a Perl or a Linux shell 

script in order to obtain the desired metrics, such as throughput, end-to-end delay, packet 

losses, etc. The results of the data processing are further manipulated in MATLAB to 

allow graphical interpretation. 

Appendix A contains one example of a Tel script file generated by the user, and 

Appendix B contains an output trace file generated by one of the simulations. 

B.       QOS SIMULATION STRUCTURE IN NS2 

The NS2 QoS model proposed by this thesis contains two different levels of 

software programming: the user level in OTcl and the specific classes of functions 

resident in the simulator in C++ programming language. 

The user level in OTcl is implemented by generating a mobile node movement 

file and a traffic pattern file (with traffic conditioning) and by defining all protocols to be 

used in each layer. Each specific user-file generation will be discussed in further detail in 

the following sections. The user has flexibility in changing the various parameters for 

each simulation in NS2. 

Figure 6.2 depicts the hierarchical simulation design for NS2 in the two software- 

programming levels. Some of the C++ functions, such as FIFO, RED/RIO, MAC 802.11, 

and token bucket profiler were resident within NS2 and were appropriately modified 

according to the QoS simulation needs. Others, such as meter, marker and priority 

queuing were externally created in C++ and ported to the NS2 structure obeying the pre- 

existing class hierarchy. All these C++ functions define the corresponding Tel classes to 

be used at the upper simulation level. 

At the Tel level, the C++ related subroutines are called within the appropriate Tel 

scripts (see Figure 6.2). Finally in the main Tel program, the remaining Application 
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Program Interface (API) configuration parameters, such as the physical layer model (two- 

ray ground), the type of antenna (omnidirectional), the type of ad-hoc routing protocol 

(this thesis adopted DSR), the height of the nodes, the simulation duration, etc. are 

defined and changed according to the scenario under consideration. 

main program 
mobile node configuration parameters 

Tel level 

DSR routing protocol Tel 
agent script file 

node movement 
Tel script file 

Traffic generation 
(TCP/UDP) with traffic 
conditioning script file 

C++ level 
DSR routing protocol C++ 

functions adapted to 
support new queuing 

schemes 
T 

MAC 802.11 
adapted to 
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scenario C++ 
function 

adapted to 
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Meter Token Bucket 
Traffic profiler Marker 

Priority 
Queuing 

RED/RIO 
Queuing FIFO 

Figure 6.2 Simulation Structure in NS2 to Implement QoS in MANETs. 

1.  Protocol Stack 

Figure 6.3 shows the mobile node mechanism and implementation in NS2. The 

network stack for a mobile node consists of a routing agent, a link layer (LL), an Address 

Resolution Protocol (ARP) module connected to the LL, an interface queue (IFq), a MAC 

layer and a network interface. All network components are then connected to the channel 

[40]. 

Packets are generated (sent) by the application and are received by the routing 

agent. This agent determines the path that the packet must travel to reach the destination 

and stamps it with this information. 

The packet is then sent down to the link layer. The Address Resolution Protocol 

(ARP) is used to determine the hardware addresses of the neighboring nodes and map IP 

addresses to the correct interfaces for dissemination. When the hardware address of a 
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packet's next hop is known, the packet is sent down to the correct interface queue, where 

it awaits a signal from the Medium Access Control (MAC) protocol. 
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Figure 6.3 Schematic of a Mobile Node Protocol Stack in NS2 (After Ref. [40]). 

When the MAC layer determines that it can send a packet onto the channel, it 

takes the packet from the head of the interface queue and moves it over to the network 

access interface.  The network access interface sends the packet onto the radio channel. 

The packet is copied and delivered to all network access interfaces. The time of arrival of 

the packet is calculated for each interface based on the distance between the nodes and 
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the speed of light. Each network access interface stamps the packet with the receiving 

interface information and then invokes the propagation model. 

The radio propagation model uses the transmitting and receiving stamps to 

determine the power with which the interface at the receiving node will receive the 

packet. The receiving node, after checking if it successfully received the packet, passes 

the packet to its MAC layer. From there up to the application layer, the above procedure 

is then carried out in reverse order. 

Figure 6.3 shows in bold italics the functionally added to the protocol stack in this 

thesis in order to provide the QoS and to simulate the intended military scenarios. The 

details of these additions are discussed in the following sections. 

2.  Mobile Node Movement 

For node movement, the user-controlled parameters are: the number of nodes in 

the network (-n), the pause time in between node movements (-p), the maximum speed 

of each node in meters per second (s), the total simulation time in seconds (-t), the 

coordinates along the x axis in meters (-x) and the coordinates along the y axis in meters 

i-y)- 

Each mobile node movement makes use of a routing agent for the purpose of 

calculating routes and reachability to other nodes within the MANET. In addition, there 

is a C++ program (setdest.cc) in the NS structure that allows the user to program 

movement scenarios using a Random Waypoint Algorithm, described in [41]. This 

algorithm generates a file with embedded Tel commands, such as: 

$ns at $time $node_i setdest   <x> <y> <speed> (6.1) 

which induces random movement of the mobile nodes. It does so by defining at each 

simulation time the future destination (X and Y location) of the node and the speed with 

which it will move to reach this destination. Hence, the destination and speed values are 

generated in a random fashion. 

The command line 
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Vsetdest -n 10 -p 0 -s 20 -t 1000 -x 10000 -y 10000>scenario„example   (6.2) 

details the use of the "setdest.cc" program to generate a typical mobile node movement 

file in NS2 with 10 nodes, average pause time between movement equal to 0 seconds 

(nodes always moving without stopping), maximum moving speed of 20 m/s, simulation 

duration of 1000 seconds and a topology size of 10 km x 10 km. This file is saved as 

" scenario „example". Appendix C contains a node movement file generated by the user 

in the simulation. 

a.  Expanding the range 

The NS2 program "setdest.cc" calculates at each simulation time the 

reachability of the nodes based on the default 250-meter WLAN range of the commercial 

"Lucent WaveLAN DSSS (direct sequence spread spectrum) radio interface". The 

important modification made here was the changing of this default value to larger ranges 

(up to 10 km), consistent with typical Navy/Marine Corps battlefield scenarios. 

It was necessary to modify the IEEE 802.11 MAC C++ code in order to 

change the standard timing parameters of the Distributed Coordination Function (DCF), 

such as SIFS (short interframe space) and the slot time. This was required because, by 

increasing the range, the propagation delay is increased which causes the timeout of the 

standard 802.11 RTS (request-to-send) frames before getting the CTS (clear-to-send) 

back. Avoiding timeout of RTS means not dropping the packet before sending it [42]. 

The receiving threshold and transmitted power of each mobile node's network access 

interface had to be set according to larger ranges. In order to do that, the two ray ground 

propagation (equation (3.3)) was used to change the default values. 

3.   Traffic Pattern Generation 

The traffic pattern generation program (cbrgenJcl) embedded in NS2 allows the 

user to create a specific traffic pattern file, where the following parameters can be 

selected: the type of traffic (-type, Transmission Control Protocol (TCP) or constant bit 
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rate (CBR)), total number of nodes in the network (-nn), the maximum number of 

connections set up between them in the network (-mc), a random seed and, in case of 

CBR connections, the rate of packet distribution in packets per second (-rate). The CBR 

traffic is associated with User Datagram Protocol (UDP) while TCP is associated with 

File Transfer Protocol (FTP). 

Either CBR/UDP or FTP/TCP traffic connections can be created. Each traffic 

pattern file generated is unique. Command line 

ns cbrgen.tcl -type cbr -nn 10 -seed 1.0 -mc 8 -rate 2.0>traffic_example    (6.3) 

details the generation of a CBR traffic pattern in NS2 with 10 nodes, a seed value of 1, 

and a maximum of 4 connections with each source node transmitting at a rate of 2 

packets per second. The resultant file, which will be called by the main program, is 

"traffic_example". 

To simulate variable bit rate (VBR) traffic, exponential ON/OFF sources were 

defined and associated with UDP. In this case, packets are sent at a fixed rate during ON 

periods, and no packets are sent during OFF periods. Both ON/OFF periods are selected 

based on an exponential distribution. In all cases (VBR/UDP, CBR/UDP and FTP/TCP), 

packets have a constant size. 

a.   Traffic Conditioning 

Like in the node movement file, the traffic pattern file can contain arbitrary 

Tel code to configure the traffic load in the simulation. Based on the C++ functions 

inserted in the NS2 architecture, the corresponding Tel classes are called by the traffic 

profile script (see Figure 6.2) in order to provide the necessary DiffServ conditioning 

functionality at the "ingress (source) nodes". 

Figure 6.4 contains a example of a modified traffic generation file used in one 

of the QoS simulations. Following the Tel command lines in this example, first, a regular 

NS2 TCP agent is created, where the TCP window size, the packet size, and the ID (or 

class) of the flow are defined. Second, the "DiffTC" (DiffServ Traffic Conditioning) Tel 

class is created. This class defines the traffic profiler to be used (Token Bucket - TB) and 
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its initial parameters (bucket size and token generation rate). The corresponding 

meter/marker Tel functions are then associated with this pre-defined traffic profile (per 

Figure 5.2). Note that the underlying C++ functions for the meter, marker and token 

bucket profiler allow the association and the definition of binding parameters at upper 

simulation levels. After that, the conditioning function is associated with the source node 

and with the application (FTP) to be used as traffic type. A sink is then created at the 

receiving node, and the time when the traffic exchange will begin is defined. 

# node  0  connecting to node 1  at  time 52.090227846563891 
# definition of TCP agent 
set tcp_(0) [new Agent/TCP/Reno] 
$tcp_(0) set window_ 8 
$tcp_(0) set packetSize_ 1460 
$tcp_(0) set class_ 0 
# definition of the DiffServ Traffic Conditioning   (DiffTC) 
# TB=Token Bucket,   Target Rate   (Ri)=100khps,   Token Bucket Size   (Bi)=  0 
set difftc(O) [new DiffTC TB 100kbps] 
set meter_ [$difftc(0) getuteter] 
$meter_ tbsize 0 
# attaching DiffTC to  the source   (ingress)  node 
$difftc(0) attach-conditioner $node_(0) $tcp_(0) 
# defining the sink   (destination node)   and linking to  the source node 
set sink_(0) [new Agent/TCPSink] 
$ns_ attach-agent $node_(l) $sink_(0) 
$ns_ connect $tcp_(0) $sink_(0) 
set ftp_(0) [$tcp_(0) attach-source FTP] 
$ns_ at 52.090227846563891 "$ftp_(0) start" 
# adapting DiffTC parameters 
$difftc(0) AdptPara 1.5Mbps 100000  

Figure 6.4 DiffServ Traffic Conditioning (part of Tel traffic file in NS2). 

Finally, at the end of the node-to-node connection section of the file and 

during a specific time in the simulation, the paramaters (token generation rate and bucket 

size) of the trafic profiler can be modified to adapt to a new traffic conditioning situation. 

4.  DSR Routing Protocol Adapted 

NS2 allows the selection of one of the four available ad-hoc routing protocols 

(DSDV, DSR, AODV, TORA) during the node configuration in the main Tel program. In 

this thesis, as explained in Chapter m, DSR is adopted. 
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The original definition of the DSR routing agent in NS2, which also includes the 

link layer functionality, allows the use of only one type of interface queue: First-In First- 

Out (FIFO) with priority given only to the routing messages. However, to implement the 

DiffServ structure, Chapter V showed that the interior and the ingress nodes should be 

able to implement buffer (queue) management (RED/RIO) or priority queuing (PQ) in 

order to provide the desired service differentiation or per-hop behavior. Therefore, the 

NS2 functions dsr.tcl, dsragent.cc and dsragent.h were modified to allow configuration 

of these two new interface queuing (IFq) schemes. 

5.  Interface Queuing 

After implementing the changes in the routing/link layer levels, the mobile nodes 

can be configured with one of the three different types of Interface Queue (IFq): FIFO, 

RED/RIO or PQ. While FIFO was originally in the NS2 structure, the other two have 

been added as part of this work. 

a.   Buffer Management (RED/RIO) 

The buffer management algorithm based on Random Early Drop with 

IN/OUT (RED/RIO) was one of the C++ functions already embedded in NS2 for the 

wired networks and was based on the work presented in [35] and [33]. The original NS2 

version of this queuing scheme allows the user to define the main IN/OUT threshold and 

dropping probability parameters during the simulation time (main Tel program). 

Two modifications were made to this program. First, access of the IN/OUT 

DSCP (DiffServ Code Point) field in the IP header of the packets, which is set by the 

marker during the conditioning at the ingress node, was implemented. Second, the 

MANET routing messages were set to have the highest priority among all packets. The 

first modification guarantees that the RED/RIO queuing scheme will be able to access the 

specific field in the IP header that contains information about priority of the data packets. 

The second modification is made because the existing RED/RIO in NS2 is not able to 

prioritize routing packets. We know that in MANETs the mobility of the nodes constantly 
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causes link breakages, which causes exchange of routing packets in order to establish the 

new routes. If priority were not given to the routing packets or if they were treated as 

regular data packets, the new routes would not be rapidly established and hence a 

connection between the nodes would not be possible. 

b.   Priority Queuing (PQ) 

The C++ function to execute this queuing scheme was derived from the 

existing FIFO in NS2. Two modifications were made to this function. Like in RED/RIO, 

a function that accesses the IN/OUT DSCP field in the IP header of the packets was first 

created. Second, another function that inserts IN packets ahead of the OUT packets in the 

queue was created. The main effect of these modifications is to guarantee that the queues 

in the mobile nodes will be able to distinguish packets having different priorities by 

appropriately placing them in the queue. The FIFO scheme in NS2 already provides 

priority to routing packets. 

6.  Trace Files 

The completion of all simulations in NS2 generates an output trace file. NS2 has 

no resident statistic production capability as is available in OPNET. Each output trace 

file must be parsed using either a Linux shell (awk/grep) or Perl script commands to 

collect specific data from the output file for further data processing. The output trace 

files generated by the simulation can exceed several gigabytes of storage capacity; 

therefore, only a maximum of 10 active connections were used. The data for each metric 

(end-to-end delay, throughput and losses) is parsed from the output file using a Linux or 

Perl script and dumped into MATLAB to produce graphs. Appendix B contains an 

output trace file generated in the simulation. 

C.       SUMMARY 

This chapter has provided an overview of the implementation of NS2 version 

2.1b6 and has presented the QoS model.   Several NS2 resident features of the mobile 
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node protocol stack were maintained in our simulations. Traffic conditioning capability 

was added to the traffic pattern generation (see Figure 6.4). Modifications were made to 

the existing Interface Queues (IFq), to the MAC layer (IEEE 802.11) and to the 

propagation model in order to implement the QoS-enabled protocol stack and to simulate 

typical military scenarios. Statistics were collected on each simulation through parsing of 

the output file and further processing in MATLAB. 

68 



VII.    RESULTS 

In this chapter, the results of simulations in NS2 are presented. The objective was 

to use throughput, average end-to-end delay and loss rate as the main performance 

metrics in the evaluation of the proposed QoS algorithms. Throughput is a measure of the 

actual number of bits per second received by the destination nodes. Average end-to-end 

delay is the average of the total time taken by a packet from the moment it was sent by 

the sender node's application until it is received by the receiver node's application. This 

includes all possible delays caused by buffering during route discovery and media access 

and propagation. The loss rate represents the percentage of packets that are lost due to 

buffer overflow or routing (destination unreachable) in comparison with the total number 

of packets that were sent. Li this thesis, the adopted physical layer model is assumed to be 

error-free; hence errors due to the wireless channel propagation effects are not 

considered. 

Various network sizes (number of nodes), pause times, node velocities and packet 

rates were used during the simulation and further details will be provided later in the 

chapter. FTP/TCP, CBR/UDP and VBR/UDP performance results are compared to show 

how the QoS algorithms in typical MANET scenarios can affect different types of traffic. 

Section A describes the scenario used in the simulation. Section B presents a 

comparison of results of TCP and UDP types of traffic under multi-hop wireless 

networks. Section C presents the impact of controlling the traffic profiler parameters in 

the traffic conditioning function block of the sender nodes. Section D investigates the 

effectiveness and limitations of the QoS algorithms when providing service 

differentiation for different types of traffic. Finally, Section F demonstrates how a simple 

voice application is affected by packet dropping and how it can take advantage of the 

QoS algorithms in order to provide a better signal quality for the end user. 

A.      SIMULATION SCENARIOS 

The network configuration used in this simulation is typical of a tactical 

deployment envisioned by the JTRS.  The network implementation encompassed 10 (or 
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50) nodes with a maximum of 8 connections over a variety of geographic environments: 

20 km x 20 km, 40 km x 40 km and 50 km x 50 km. A larger number of connections 

could be used; however, the processing time and available space on the computer hard 

drive were limiting factors. The default parameters used in the simulations are listed in 

Table 7.1. 

Parameter Range of Values 

Transmitter range 10 kilometers (km) 

Simulation time 1000, 2000 seconds (s) 

Number of nodes 10 or 50 

Pause time 0, 20, 50, 120, 200, 300, 600,900,1000 

Environment size 20 km x 20 km, 40 km x 40 km 

50 km x 50 km 

Traffic type FTP/TCP, CBR/UDP or VBR/UDP 

Packet size 1460 bytes (TCP), 1000 bytes (UDP) 

Transmitter power 50 watts (W) 

Node velocity Random number between 0 to 20m/s 

Antenna heights 10 m 

Wireless Channel Bandwidth 2 Mbps 

Table 7.1 Parameters Used During NS2 Simulations. 

1.   Configuration 

Each simulation was configured using the parameters listed in Table 7.1. Network 

environment sizes, pause times, simulation time and packet rates were varied as needed. 

Three different network environment sizes were chosen to provide a realistic view of the 

performance of the QoS algorithms with respect to different battlespaces. Nine different 

pause times were used to represent a high mobility to a low mobility environment. In 

terms of mobility, the velocity parameter was set to 20.0 m/s (72 km/h), which means that 

for each node, NS2 selects a random velocity in the uniform interval from 0 to 20.0 m/s 

(average 10 m/s) to define the node movement at a specific simulation time. Constant Bit 

Rate (CBR) or Variable Bit Rate (VBR) traffic using User Datagram Protocol (UDP) and 

File Transfer Protocol (FTP) using Transmission Control Protocol (TCP) were used in 
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each simulation. The selection of the type of protocol (CBR/UDP, VBR/UDP or 

FTP/TCP) for each simulation depends on the specific type of traffic behavior to be 

investigated. Traffic, such as data, requiring reliable transmission use FTP/TCP; TCP has 

built-in congestion control mechanisms. On the other hand, loss-tolerant traffic, such as 

voice and video, generally uses CBR/UDP or VBR/UDP. In CBR/UDP and VBR/UDP, 

different sending packet rates can be selected to reflect different applications and traffic 

loads. 

The results of a simulation session are stored in an output trace file (see Appendix 

C for an example of output file). The trace file is parsed using a Perl or Linux script to 

extract the required metrics: throughput, average end-to-end delay, and loss rate. The 

extracted data is then exported to MATLAB for further manipulation and graphical 

presentation. 

B.        TCP AND UDP OVER MULTI-HOP WIRELESS NETWORKS 

The first step before implementing the QoS simulations is to understand the 

performance behavior of TCP and UDP types of traffic over 802.11 in a fixed multi-hop 

wireless network. The simulation results presented in Figure 7.1 show the dependence of 

the throughput metric on the number of hops between the sender and destination nodes. 

The channel bandwidth and CBR/UDP sending rate are both 2 Mbps. FTP/TCP window 

size is 8 packets and the packet size is 1460 bytes. Although the wireless channel has a 2 

Mbps bandwidth, the maximum throughput that can be achieved with both types of traffic 

is always below 1.5 Mbps (see Figure 7.1). The main reason for that is the contention 

imposed by the RTS/CTS and the DCF protocol embedded in the MAC layer [42]. 

The results shown in Figure 7.1 are valid for a fixed wireless network (see Figure 

3.10). It is clear that in MANETs, the node movement besides the number of hops will 

also play an important role to reduce the overall throughput. Thus, the values shown in 

Figure 7.1 can serve as upper bounds for the throughput metric and they will be used as 

reference values in simulations presented later. 

Although the throughput achieved with both types of traffic is quite similar, in 

TCP this is accomplished without any packet loss due to the embedded congestion/flow 
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control mechanisms [36]. On the other hand, in UDP there is no congestion/flow control 

scheme and packets are generated at a constant rate (2 Mbps) at the sender node. Since 

the buffer of each node has limited size (50 packets in this simulation), packets waiting to 

be transmitted will add to the queue (buffer) up to a point when overflow starts to occur 

and packets begin to be dropped. As a result, CBR/UDP traffic transmission rate should 

always be kept below the upper bounds of Figure 7.1 to guarantee low loss rates. 
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Figure 7.1 CBR/UDP and FTP/TCP Throughput over MAC802.11. 

C.        TRAFFIC CONDITIONING 

As mentioned in Chapter IV, traffic conditioning is implemented in DiffServ in 

order to define packet flows that need better forward treatment within the network. 

Details of the main function blocks implementing traffic conditioning were presented in 

Chapter V. In the QoS model implemented in this thesis, traffic conditioning is 

performed at the ingress (source) nodes. The idea is to identify (mark) packets needing 

priority-based treatment at the source nodes, as shown in Figure 5.2. 
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1.  Impact of Traffic Profiler Parameters 

In order to understand how the traffic profiler parameters affect service 

differentiation, the following simulation scenario was created. Using the "string" fixed- 

node wireless topology depicted in Figure 7.2, FTP/TCP traffic was generated and 

conditioned at the source node (Node 0). Priority Queuing (PQ) was implemented in all 

the nodes. There were one or two hops between the sender and the destination depending 

on the receiver node being Node 1 or Node 2, respectively. Two FTP/TCP sessions were 

generated at Node 0. A token bucket profiler, with a target rate (token generation rate) Ri, 

is pre-defined and associated with each TCP session. 

TCP sender 
Traffic Conditioning PQ pn 
„r, ^-^v   10km  j^-^ 10km  •—>^ PQ 

Figure 7.2 String Topology for Traffic Conditioning Simulation 

There were two main goals in these TCP simulations. The first goal was to show 

that traffic differentiation implemented by the QoS model is highly dependent on the 

number of hops between the sender and the receiver. The second goal was to demonstrate 

that the traffic profile parameters in the traffic-conditioning block should take this 

information (number of hops) into account in order to maintain consistent traffic 

differentiation. 

Figure 7.3 shows results of FTP/TCP throughput when traffic is sent through one 

or two hops. The target rate values were pre-defined to make the throughput of the first 

TCP session much larger (about 6 times) than that of the second one. Based on the a 

priori knowledge of the total available bandwidth for each case (see Figure 7.1), the 

target rates were then appropriately chosen. For the one-hop case, the two TCP sessions 

were given about 85% and 15% of the total available bandwidth (approximately 1300 

kbps). For the two-hop case, the two TCP sessions were also given about 85% and 15% 

of the total available bandwidth (approximately 700 kbps). 
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Figure 7.3 shows that traffic differentiation is consistently achieved in both cases. 

In addition, the sessions with lower target rate (dotted lines) tend to have slightly greater 

throughput than the pre-specified target rates while the higher target rate sessions (solid 

lines) tend to have slightly lower throughput than the pre-specified target rates. 
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Figure 7.3 FTP/TCP over 1 and 2 Hops. Target Rates were Pre-defined Based on the a 

priori Knowledge of the Total Bandwidth Available for Each Case. 

Figure 7.4 shows the throughput performance when the target rates are defined 

without knowing a priori the total available bandwidth for each case. The results 

demonstrate that traffic differentiation becomes difficult to achieve when the traffic 

profile parameters for the two-hop case are used in the one-hop case. In fact, the 

distinction between the solid and dotted lines for the one hop case in Figure 7.4 is much 

more subtle than that between the solid and dotted lines for the two hop case. This is 

because for the one-hop separation case, there is plenty of bandwidth available (about 

1300 kbps), which is much more than the sum of the pre-defined target rates. This 

implies that the TCP traffic, especially the session with lower target rate, tends to absorb 

the excess available bandwidth, thus increasing its throughput. This leads to the 
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conclusion that ideally, the traffic-conditioning block must be informed of the actual 

number of hops and then must adjust its traffic profile parameters accordingly to 

consistent relative traffic differentiation. It is assumed that the MANET routing protocol 

(DSR or any other) can supply this information when establishing a path between the 

sender and the receiver. If this information is not provided, assuming one-hop traffic 

profile parameters, if not ideal, at least can guarantee traffic differentiation (see solid and 

dotted lines for the two hop case in Figure 7.4). 
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Figure 7.4 FTP/TCP over 1 and 2 Hops. Target Rates were Pre-Defined Without 

Knowing a priori the Total Bandwidth Available for Each Case. 

D. SERVICE DIFFERENTIATION IN MANETS 

In this section, the goal is to present the simulation performance results of the 

proposed QoS model for typical military scenarios with different types of traffic 

(FTP/TCP, CBR/UDP, TCP/UDP combined and VBR/UDP) being generated by the 

source nodes. To verify the effectiveness of the QoS model, the offered traffic load was 

defined so that congestion was always present in the network; i.e., in all simulations, the 

sending rates needed to guarantee that the available wireless bandwidth was not enough 
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to accommodate the entire traffic load. It is important to note that without congestion, 

there is no need to provide QoS-based service differentiation schemes since the traffic 

requirements are potentially satisfied for all sources. 

The scenarios for all simulations in this case had 10 nodes. Of a total of 90 

possible pairs of connections that could be established between these 10 nodes, 8 traffic 

pairs were defined. Four of these eight pairs were selected to have low priority (packets 

were OUT of conformance) and the other four were selected to have high priority 

(packets were marked as IN conformance). Twelve movement scenarios, with a 

geographical size of 20 km x 20 km and 10 nodes moving with velocities randomly 

chosen from a uniform distribution [0 to 20 m/s], were created for these pause times: 0, 

20, 50, 120, 200, 300, 600, 900 and 1000 seconds. The different pause times characterize 

the behavior of the system under different mobility levels. A zero pause time indicates a 

high mobility level Simulations were run for RED/RIO and PQ queuing schemes in 

order to compare their performance with that of the best-effort FIFO scheme. 

1.   FTP/TCP Analysis 

Results depicted in Figure 7.5 and 7.6 clearly show that while the best-effort 

FIFO scheme does not provide any traffic differentiation, both RED/RIO and PQ do. 

Figure 7.5 shows that PQ provides a better throughput differentiation than RED/RIO for 

all mobility levels. 

It is important to mention that, for this type of traffic (FTP/TCP), the loss rates for 

all mobility cases were quite low. In fact, the average loss rate was below 0.5% and only 

slightly higher (2%) for the low priority packets in the RED/RIO scheme. Note that a 

packet loss is only computed when a packet that is sent by the source node is not received 

at the destination. In other words, although packet losses may have occurred, TCP 

retransmissions guarantee good reliability in terms of packet delivery at the end-receiver. 

The average percentage of packets that were retransmitted was below 5%, even for the 

high mobility cases. 

As depicted in Figure 7.6, the average end-to-end delay for the low and high 

priority sessions in the FIFO and RED/RIO schemes does not differ significantly. This is 
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because the position of the packets in the queues for these schemes stays the same, 

independent of whether the packets are low or high priority (see Figure 5.7). On the other 

hand, for the PQ scheme, low priority packets stay longer in the queues than the high 

priority ones (see Figure 5.8), which explains the significant difference in the delay 

metric. 

Two major facts justify the low loss rates (below 0.5%) for TCP connections. 

First, the selection of a limited geographical size (20 km x 20 km) combined with a small 

number of nodes (10) and a transmission range of 10 km reduces the losses caused by 

unreachability of the nodes (routing losses). Second and most important, the flow 

control/congestion avoidance of TCP seems to adapt well to the RTS/CTS and DCF 

schemes of the 802.11 MAC layer. 

It is known that when congestion or link breakage occurs, TCP reduces its 

sending rate, which causes degradation in the throughput performance. However, as 

shown in Figure 7.5, this degradation occurs for all traffic sessions. Thus, it does not 

cause any prejudice to the desired traffic differentiation. The "logical association" 

between TCP's flow/congestion control and IEEE802.11's RTS/CTS and DCF helps to 

keep buffer (queue) sizes small and hence low losses. 

From the geographical size (20 km x 20 km), it is obvious that the number of 

hops between the sender and the receiver during this simulation was 1, 2 or 3, at 

maximum. From Figure 7.1, the upper bounds on throughput are approximately 1300 

kbps, 700 kbps and 450 kbps for 1, 2 and 3 hops, respectively. The performance 

degradation observed in the resultant average throughput (about 160 kbps) of all sessions 

is mainly caused by two factors: TCP's reaction to congestion and link breakage (node 

mobility) and the higher contention in the MAC layer due to more than just one traffic 

source trying to access the medium. 

2.   CBR/UDP Analysis 

The same twelve scenario (movement) files as in the previous subsection were 

used here. The results are shown in Figures 7.7 through 7.9. The sending rates of the 
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CBR/UDP sources were defined as 160 kbps (average throughput resulting from TCP 

simulation) in order to guarantee congestion in the simulations. 
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Figure 7.5 FTP/TCP: Average Throughput for Low and High Priority Sessions. 
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Figure 7.6 FTP/TCP: Average End-to-end Delay for Low and High Priority Sessions. 
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Figure 7.7 shows that both RED/RIO and PQ provide satisfactory traffic 

differentiation between the low and high priority types of traffic for the throughput 

metric. As expected, the FIFO scheme provides no differentiation. 

However, as shown in Figure 7.8, the drawback of traffic differentiation in 

CBR/UDP is a severe increase in the loss rates, which are mainly due to buffer 

overflows. Unlike TCP, UDP does not offer any flow control Also, the applications keep 

generating and sending traffic to the source nodes' buffer at a constant rate. These two 

factors combined with the contention for the media at the MAC layer cause the buffers to 

rapidly fill up and overflow, resulting in severe packet dropping. Although high priority 

packets are dropped less than the low priority ones, the loss rates are still significant for 

these packets (average of 16%). 

The average end-to-end delay results shown in Figure 7.9 confirm the traffic 

differentiation for the PQ scheme in which high priority packets are delayed less than the 

low priority ones. Figure 7.9 also shows that no differentiation is realized for the FIFO 

scheme as expected. For the RED/RIO algorithm, low priority packets are delayed less 

than the high priority ones. The explanation for this is directly related to the loss rates 

depicted in Figure 7.8 and the probability-based dropping mechanism shown in Figure 

5.6. Due to the high overall loss rates of CBR/UDP traffic, the few low priority packets 

that reach the destination are the ones below the d™^ threshold. Since this value is less 

than the ^threshold, the end-to-end delay for the "surviving" (not dropped) low priority 

packets (OUT) is expected to be lower than that for the high priority ones (IN)- 

3.  TCP and UDP Combined 

Two simulations were generated for this case: one with CBR/UDP having priority 

and the other with FTP/TCP having priority. The same twelve scenario (mobility) files as 

in the previous subsections were used. 
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Figure 7.7 CBR/UDP: Average Throughput for Low and High Priority Sessions. 
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Figure 7.8 CBR/UDP: Average Loss Rate, Buffer Size = 50 packets. 
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Figure 7.9 CBR/UDP: Average Delay for Low and High Priority Sessions. 

a. UDP with priority 

Eight sessions between randomly selected pairs of nodes were created. Four of 

these were FTP/TCP and the others were CBR/UDP. Each source node generated 

FTP/TCP and/or CBR/UDP traffic at the same time. CBR/UDP was defined to have high 

priority packets and its sending rate was kept at 160 kbps. 

Figure 7.10 shows that, except in two high mobility cases (pause times of 200 

and 600 seconds), UDP throughput was always higher than that of TCP. When PQ and 

RED/RIO were used to benefit the UDP traffic, TCP throughput performance degraded 

while that of UDPs improved. When RED/RIO buffer management was used, the 

threshold parameters (0^ and d£j and the dropping probability (P™1) for the low 

priority TCP packets were selected in order to reduce the interaction between TCP 

flow/congestion control and the IEEE802.il MAC layer. This resulted in a better 

throughput differentiation for RED/RIO compared to PQ. 

Figure 7.11 shows that the average TCP end-to-end delay is lower than 

UDP's, even when TCP is defined as low priority. TCP's flow/congestion control and its 
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interaction with the MAC 802.11 layer seems to be responsible for maintaining small 

queue sizes, and hence reduced average delays. In this simulation, the TCP and UDP 

sessions were randomly selected and all nodes were free to move, making it impossible to 

predict whether or not the high priority UDP sessions and the low priority TCP sessions 

had common intermediate nodes. It is clear that if this were the case, the PQ scheme 

applied in these common intermediate nodes, would certainly benefit the high-priority 

UDP sessions, causing less delay for this type of session. 

Improvements in the end-to-end delay of the UDP high priority packets are 

obtained for both PQ and RED/RIO when compared to FIFO. For PQ, this improvement 

is mainly due to the re-positioning of the UDP packets at the head of the queues. On the 

other hand, for RED/RIO, the improvement is due to the more aggressive dropping of the 

TCP packets, which cuts waiting time for the UDP packets. 

200     300 400      500      600 
pause time (sec) 

700      800      900     1000 

Figure 7.10 Average Throughput for TCP and UDP (High Priority) Combined Sessions. 
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Figure 7.11 Average Delay for TCP and UDP (High Priority) Combined Sessions. 

b. TCP with priority 

Eight sessions between the same pairs of nodes as in the previous subsection 

were created. Four of these were TCP and the others were UDP. Each source node 

generates both TCP and UDP. CBR/UDP's sending rate was kept at 160 kbps, and now 

the FTP/TCP traffic was given priority. 

Figure 7.12 shows that throughput differentiation between TCP and UDP 

traffic is clearly achieved at all mobility levels, and is more evident for the PQ scheme. 

Also, when PQ and RED/RIO were used to benefit the TCP traffic, the UDP throughput 

performance degraded while that of TCP improved. Compared to Figure 7.10, the 

improvements obtained when TCP was given priority were much more significant than 

when UDP was given priority. 

For the end-to-end delay metric, the same trend could be verified. Results 

shown in Figure 7.13 demonstrate that end-to-end delays are low for TCP compared to 

UDP, even when not using any priority scheme (FIFO). TCP flow control and its 
83 



interaction with the MAC802.11 layer were the factors responsible for this behavior. Low 

priority UDP packets that were kept in a mobile node's queue for a long time before 

being served increased the overall end-to-end delay significantly. 

250 

100  200  300  400  500  600  700  800  900 1000 
pause time (sec) 

Figure 7.12 Average Throughput for TCP (High Priority) and UDP Combined Sessions. 
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Figure 7.13 Average Delay for TCP (High Priority) and UDP Combined Sessions. 
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4.  VBR (on/off Exponential) /UDP 

Is this section, results for variable bit rate sources are presented. To simulate 

variable bit rate (VBR) traffic, exponential ON/OFF sources were defined and associated 

with the transport layer protocol UDP. In this case, packets are sent at a fixed rate during 

ON periods, and no packets are sent during OFF periods. Both ON/OFF periods are 

selected based on an exponential distribution. 

The reason for using VBR was to more closely represent real multimedia types of 

traffic, such as voice. Since the traffic sources are not synchronized (packets are sent at 

different times), this simulation provides an insight into a real scenario where the offered 

network load varies much more than in the CBR/UDP case. 

For this simulation, the average "on" (burst) and "off (idle) times for the traffic 

generator was chosen to be 0.5 seconds. The sending rate during the "on" time was 300 

kbps, which resulted in an average sending rate of approximately 140 kbps for each 

source. The same previous movement scenarios were used. The rates and the average 

"on" and "off " times were selected such that congestion was guaranteed to occur in all 

simulated scenarios. Figure 7.14 depicts the average throughput for the low and high 

priority sessions for the VBR/UDP type of traffic. Note that service differentiation is 

clearly achieved using both RED/RIO and PQ schemes. 

Figure 7.15 shows the average loss rate for the VBR/UDP traffic. By comparing 

these results with those in Figure 7.8 for the CBR/UDP traffic, it is seen that the loss rates 

are lower for VBR/UDP. The high priority sessions show an average loss rate of 10%, 

instead of 16% as in the CBR/UDP case. The reason behind smaller losses for VBR/UDP 

is the less aggressive rate of traffic generation. Of course, UDP still does not offer any 

flow control However, the "off" (idle) periods of time help the mobile nodes' buffers to 

alleviate packet dropping due to buffer overflow during the "on" times. 

Results for the end-to-end delay metric are depicted in Figure 7.16. The trend is 

similar to the one obtained for the CBR/UDP traffic (see Figure 7.9). However, due to the 

less aggressive rate of traffic generation, VBR packets wait for a relatively short duration 

in the queues and hence are not delayed as much as in the CBR/UDP traffic. 
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Figure 7.14 VBR/UDP: Average Throughput for Low and High Priority Sessions. 
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Figure 7.15 VBR/UDP - Average Loss Rate, Buffer Size = 50 packets. 
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Figure 7.16 VBR/UDP: Average Delay for Low and High Priority Sessions. 

5.  FTP/TCP Throughput Over Large Ranges 

In the following simulations, throughput performance of FTP/TCP in scenarios of 

different geographical sizes is presented. The ultimate goal is to show that the proposed 

QoS scheme is flexible and works well even for geographical situations in which 

connecting nodes are far apart. In addition, the following simulations will show that the 

QoS model reported in this thesis does not guarantee a connection between the nodes. 

However, if a physical wireless connection is established and congestion is presented, the 

model will be able to provide service differentiation in terms of throughput for a variety 

of scenarios. QoS results for CBR/UDP follow the same trends as these for FTP/TCP and 

will be in a following section. 
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a. 10 nodes, Geographical Area 20 km x20 km 

Figure 7.17 presents results of the instantaneous throughputs (measured at the 

receiver nodes) as a function of the simulation time. In this simulation, 10 nodes were 

used; node speeds were randomly selected between 0 and 20 m/s; a pause time of zero 

(highest mobility level) was adopted; and the geographical area was 20 km x 20 km. Four 

FTP/TCP sessions were generated in each simulation. In the first simulation, all four 

sessions had equal priority. In the following four simulations, one session per simulation 

was selected to have packets marked as high priority. 
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Figure 7.17 FTP/TCP: Instantaneous Throughput over a 20 km x 20 km, 10 Nodes, and 

High Mobility Scenario. 
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Figure 7.18 complements the results of Figure 7.17. In Figure 7.18, the 

average throughput for each session was computed and compared with the case of equal 

priority (packets of all sessions are marked as OUT) in order to demonstrate the relative 

improvement in throughput when priority is provided for a specific session (only packets 

of this session are marked as IN). When no session has priority, the TCP and 802.11 

interaction forces the connections to take turns in "capturing" the channel. As a result, 

throughput is distributed with single-hop connections having a clear advantage over the 

others. By using the proposed QoS algorithms (traffic conditioning associated with 

queuing schemes, PQ or RED/RIO), it is noted that all sessions achieve better throughput 

when given priority. The percentage improvement is dependent on a combination of 

factors, mainly mobility and interference from neighboring nodes trying to access the 

channel. 
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Figure 7.18 FTP/TCP Relative Improvement in the Average Throughput over a 20 km x 

20 km, 10 Nodes, and High Mobility Scenario. 

b. 10 nodes, Geographical Area 40 km X40 km 

Figure 7.19 shows plots of the instantaneous throughput as a function of the 

simulation time. The only difference from the simulation parameters of Figure 7.17 was 

the larger geographical area of 40 km x 40 km instead of 20 km x 20 km. As shown in 

Figure 7.19, in this larger scenario, there were periods of time (from 0 to about 1100 
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seconds) when no connection was possible due to the unreachability of the nodes 

attempting to establish FTP/TCP sessions. 

As expected, Figure 7.20 shows that the average throughput for each session 

tends to be lower when compared to the 20 km x 20 km case. However, relative 

throughput performance improvement can still be achieved as shown in Figure 7.20. 
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Figure 7.19 FTP/TCP Instantaneous Throughput over a 40 km x 40 km, 10 Nodes, and 

High Mobility Scenario. 

c. 50 nodes, Geographical Area 50 km X50 km 

For this simulation, the number of nodes and the geographical area were 

increased. The remaining simulation parameters were kept the same. By populating the 

geographical area with more nodes, the probability of not having a connection, even with 

a large area, was reduced. Results depicted in Figure 7.21 support this observation. 
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Finally, Figure 7.22 shows that relative improvements in throughput are achieved for this 

case, following the same trends as before. 
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Figure 7.20 FTP/TCP Relative Improvement in the Average Throughput over a 40 km x 

40 km, 10 Nodes, and High Mobility Scenario. 
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Figure 7.21 FTP/TCP Instantaneous Throughput over a 50 km x 50 km, 50 nodes, and 

High Mobility Scenario. 
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Figure 7.22 FTP/TCP Relative Improvement in the Average Throughput over a 50 km x 

50 km, 50 nodes, and High Mobility Scenario. 

6.   CBR/UDP Throughput Over Large Ranges 

In the following simulations, throughput performance of CBR/UDP traffic in 

scenarios of different geographical sizes will be presented. The goal is to show that, for 

this type of traffic, the QoS model works well in providing service differentiation in 

terms of throughput. 

Concurrent CBR/UDP and FTP/TCP types of traffic were inserted in the network. 

In the first simulation, for each scenario, none of the traffic sessions had priority. In the 

second simulation, one CBR/UDP session was selected to have priority. RED/RIO buffer 

management was implemented in all mobile nodes. The threshold parameters 

(0^ andfl^'J and the dropping probability (P^) for the low priority TCP packets were 

selected in order to reduce the interaction between the TCP flow/congestion control and 

the IEEE802.11 MAC layer. 

a. 10 nodes, Geographical Area 20 km X20 km 

In this simulation, 10 nodes were used; node speeds were randomly selected 

to be 0 and 20 m/s; a pause time of zero (highest mobility level) was adopted; and the 
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geographical area was 20 km x 20 km. One CBR/UDP 160 kbps session and three 

FTP/TCP sessions were used in each simulation. In the first simulation, the packets of all 

four sessions were marked as OUT, i.e., no priority was given. In the following 

simulation, the CBR/UDP session was selected to have packets marked as IN (high 

priority). 

As depicted in Figure 7.23, a relative improvement of 30% for the CBR/UDP 

is achieved when priority was given for this type of traffic. Two of the TCP sessions had 

their throughput relatively decreased (12% and 75%) while the sum of the throughput of 

all four sessions stayed approximately the same in both simulations. 
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Figure 7.23 CBR/UDP Relative Improvement in the Average Throughput over a 20 km x 

20 km, 10 Nodes, and High Mobility Scenario. 

b. 10 nodes, Geographical Area 40 km X40 km 

In this larger geographical scenario, there were periods during which no 

connection was possible due to the unreachability of the nodes attempting to establish 

either TCP or UDP sessions. Thus, the average throughput for each session tended to be 

lower when compared to the 20 km x 20 km case (see Figure 7.23). However, relative 
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throughput performance improvements could still be achieved for the high-priority 

CBR/UDP traffic as shown in Figure 7.24. 
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Figure 7.24 CBR/UDP Relative Improvement in the Average Throughput over a 40 km x 

40 km, 10 Nodes, and High Mobility Scenario. 

c. 50 nodes, Geographical Area 50 km X50 km 

In this simulation, the number of nodes and the size of the geographical area 

were further increased. The remaining simulation parameters were kept the same. By 

populating the area with more nodes, the probability of not having a connection was 

reduced. Figure 7.25 shows relative improvement in the throughput of the CBR/UDP 

traffic for this case following the same trend as before. 

E. VOICE APPLICATION 

The main goal of this section is to show the effects of packet dropping in a simple 

voice application. By doing this, it is possible to demonstrate the improvement in signal 

quality that can be achieved at the destination for high priority sessions when compared 

to the low priority ones. 
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Figure 7.25 CBR/UDP Relative Improvement in the Average Throughput over a 50 km x 

50 km, 50 Nodes, and High Mobility Scenario. 

In fixed IP networks, real-time applications such as voice are normally associated 

with UDP. This is because TCP flow/congestion control causes degradation in throughput 

performance and adds delay, although it improves the connection's reliability. It is 

assumed that loss of some UDP packets is tolerated by voice traffic due to the 

redundancy present in the signal and the human ear's psycho-acoustic capabilities that 

compensate for some loss of quality. Therefore, by using QoS protocols available for 

fixed IP networks, such as DiffServ or IntServ with RSVP, priority or bandwidth 

reservation can be applied to the UDP real-time traffic. 

In MANETs, however, previous simulation results showed that in a congested 

wireless ad-hoc environment, UDP traffic could sometimes face heavy packet losses, 

mainly due to buffer overflows. If these losses happen in bursts, severe degradation in the 

digitized (sampled) voice traffic can occur. As a result, the burst size (the number of 

packets dropped consecutively) is an important factor in determining the quality of the 

voice traffic at the receiver end. 
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1.  Packet Burst Loss 

In order to investigate the packet-dropping problem, a 60-second speech message 

was recorded. The digitized speech was read into MATLAB in the form of a vector 

containing the sampled speech signal values. Next, some of the previously simulated 

VBR/UDP sessions were selected and their packet loss behavior was measured. The 

VBR/UDP sessions were simulated for 1000 seconds in a congested environment in order 

to allow the realistic effects of node movement and contention for channel access to play 

a role in the packet loss behavior. 

Table 7.2 shows the frequency of occurrence of different sizes (B) of burst packet 

losses for several sessions. Each session has a different level of total packet loss, which 

can be due to these sessions having different priorities. The loss rates in the first three 

rows of Table 7.2 can be associated with high priority sessions. A value of 12 for B < 5 

packets and loss rate =1% means that, for the specific simulated VBR/UDP session, 

which has a total loss rate of 1%, a burst error of 1 to 5 packets occurs 12 times during 

the simulation time (1000 seconds). If the packet rate is 20 packets/second, a total of 

20,000 packets are sent during 1000 seconds. Thus, having a burst of 5 packets means 

that we lose about 250 milliseconds of the original speech. In other words, if the voice is 

sampled at 8000 samples/second, a packet holds 400 samples. Losing 5 packets means 

losing 2000 samples, which is equivalent to 250 milliseconds. 

l<B<5pkts 5 < B < 10 pkts 10 <B £20pkts B > 20 pkts 

Loss rate = 1% 12 7 0 1 

Loss rate = 3% 16 0 0 3 

Loss rate = 5% n   ■:;■■ :V.,3..   ..... 
■■■.' ° . 4; 

Loss rate = 10% 291 29 31 3 

Loss rate = 20% 344 41 24 30 

Loss rate = 30% 976 129 46 14 

Table 7.2 Frequency of Burst Packet Loss for Different Levels of Session Loss Rates. 
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The impact of different sizes of burst errors can be demonstrated by mapping the 

60-second digitized speech onto simulated intervals. First, a simulated interval, having 

burst errors less than 5 packets (1 < B < 5 packets), is selected. After applying the burst 

error pattern to the digitized speech, it is reconstructed in MATLAB, and the resulting 

voice packet sequence is played back. The procedure is repeated for the other error cases. 

It is observed that while small burst sizes are almost imperceptible, long burst 

sizes made comprehension of some segments of the original speech difficult. The 

spreading of the burst errors among the sampled speech can improve the quality of the 

reconstructed signal. This indicates that the use of interleaving of packets or flow control 

techniques applied to VBR/UDP sources may help to decrease the effects of burst errors. 

F.        SUMMARY 

Several simulations were performed to evaluate the proposed QoS algorithms. 

Different types of traffic (FTP/TCP, CBR/UDP and VBR/UDP) were tested using various 

mobility levels and geographical areas of different size (20 km x 20 km, 40 km x 40 km 

and 50 km x 50 km). Simulation results have shown that in the presence of congestion, 

differentiation in average throughput and delay between high and low priority sessions 

was achieved for all types of traffic. In TCP, retransmissions and flow/congestion control 

guaranteed low loss rates. On the other hand, in UDP, this differentiation was followed 

by significant packet loss rates due to buffer overflows. 
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VIII.   CONCLUSION 

A. SUMMARY 

The objective of this thesis was to develop algorithms and schemes that could be 

applied in mobile nodes to provide Quality of Service (QoS) in a mobile ad-hoc network 

(MANET) environment. 

The issues related to QoS in the different layers of the protocol stack were 

thoroughly investigated in Chapter HL In Chapter IV, two QoS protocols (IntServ/RSVP 

and DiffServ) for fixed IP networks were reviewed and the limitations/advantages of their 

application to MANETs were presented. The algorithms and schemes for traffic 

conditioning (metering, marking and shaping), buffer management (RED/RIO) and 

packet scheduling with priority (Priority Queuing) were detailed in Chapter V. In Chapter 

VL NS2 was introduced as the simulation tool used to evaluate the proposed algorithms 

and schemes. The modifications to the original NS2 functions were also detailed in this 

chapter. In Chapter VE, simulations were performed under different military scenarios 

and for different types of traffic in order to verify the advantages and limitations of the 

suggested approaches. 

B. SIGNIFICANT RESULTS 

The MAC layer based on the IEEE 802.11 standard was originally designed to be 

used in LAN environments (ranges less than 250 m). In this work, by changing the Short 

Interframe Space (SIFS) parameter, we were able to apply this protocol for larger ranges 

(up to 10 km), which allowed simulation of more realistic military scenarios. 

In fixed IP networks, DiffServ traffic conditioning is implemented in the ingress 

nodes, generally located at the network boundaries. In addition to that, the queuing and 

buffer management schemes to provide the desired differentiated per-hop-behavior 

(PHB) are restricted to the interior nodes. In MANETs, since the mobile nodes can have 

simultaneous multiple roles (ingress, interior and destination), it was found that traffic 
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conditioning must be implemented in all mobile nodes acting as source {ingress) nodes 

and the queuing and buffer management schemes must be performed by all mobile nodes. 

Based on the results of Chapter VE, the traffic-conditioning function must have 

knowledge of the actual number of hops between the communicating nodes and must 

adjust its traffic profile parameters accordingly to achieve consistent relative traffic 

differentiation. If this information is not provided by the routing protocol, using one-hop 

traffic profile parameters for the one-hop case, if not ideal, can at least guarantee traffic 

differentiation 

The buffer management (RED/RIO) scheme provided service differentiation by 

using different dropping probabilities for the low and high priority packets. Priority 

Queuing (PQ) used packet scheduling to achieve the same objective. In the presence of 

congestion, traffic conditioning associated with both Priority Queuing (PQ) or buffer 

management (RED/RIO) applied on a per-packet basis in each mobile node resulted in a 

flexible scheme that can be used to provide QoS in MANETs, despite the mobility levels 

and geographical areas. 

Results for FTP/TCP traffic were more satisfactory due to the interaction of TCP 

flow/congestion control in conjunction with the MAC layer functionality. The percentage 

of TCP retransmissions was found to be very low in all simulations. Thus, although some 

performance degradation can be expected, the reliability obtained for this type of traffic 

indicates its potential use for real-time traffic when congestion is present in the medium. 

Service differentiation was also obtained for VBR/UDP and CBR/UDP. 

Nevertheless, the resulting high loss rates make the direct application of the QoS model 

for this type of traffic less adequate. The results for VBR/UDP, when compared to 

CBR/UDP, showed that some form of flow control for UDP traffic could decrease the 

loss rates, keeping the benefits of the desired traffic differentiation. 

The demonstration of speech packet transmission indicated that while small error 

burst sizes were almost imperceptible, long error burst sizes made comprehension of 

some segments of the original speech difficult. Spreading of the burst errors among the 

sampled speech could have improved the quality of the reconstructed signal. This 

indicates that the use of interleaving of packets or flow control techniques may be applied 

to VBR/UDP sources to decrease the effects of burst errors. 
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C.       SUGGESTIONS FOR FUTURE WORK 

In this work, only two traffic classes (IN and OUT) were defined to implement 

service differentiation. This can be extended by introducing more granularity in the levels 

of differentiation. Additional levels may allow better distinction among classes with 

specific requirements. 

Here, we adopted a simple physical layer model in which errors due to 

propagation effects (Gaussian noise and fading) in the wireless channel were ignored. A 

model that includes these effects would better represent the physical layer and would 

allow analysis of the impact of packet loss (due to errors in the medium) on the QoS. 

An important issue for further investigation is the study of the influence of the 

IEEE 802.11 MAC layer on the QoS algorithms presented here. All the QoS analysis was 

performed in the presence of congestion. The CSMA/CA and the DCF algorithms 

embedded in IEEE 802.11 do not offer priority for any mobile node trying to access the 

medium. Modifications in the 802.11 MAC layer [24] or utilization of other MAC 

protocols, such as TDMA/FDMA and DAMA, could improve QoS by reserving the 

channel for a pre-defined period for a given mobile node. 

CBR and VBR types of traffic using UDP were investigated in the presence of 

congestion in MANETs. The high loss rates due to buffer overflow indicate that some 

sort of flow control at the application layer level might help improve the UDP 

performance under congestion and hence would improve the desired traffic 

differentiation. A detailed investigation of the use of Real-time Transport Protocol (RTP) 

or RTP-like protocols could provide the desired flow control and thereby enhance the 

QoS performance. 

The proposed QoS model assumed that the sender node, by using a traffic- 

conditioning scheme, determined the traffic generation rates. An interesting point to be 

investigated is the receiver-based conditioning using a similar approach. In the sender- 

based scheme adopted in this thesis, the sender node marks the packets without knowing 

if congestion actually exists in the network. Some new proposals in the literature [33] 

successfully addressed receiver-based QoS schemes for fixed TCP/IP networks by using 

the Explicit Congestion Notification bit in the TCP acknowledgment packets. This 
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scheme can be extended to MANET environments to provide better control of the traffic 

generation rates and hence better utilize the available bandwidth. 
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APPENDIX A. TCL MAIN SCRIPT SIMULATION PROGRAM FILE 

This appendix contains an example of a Tel script used in one of the simulations. 

A Tel script file resident in NS2 was modified for the specific purpose of running the 

different queue schemes with the main parameters listed previously in Table 7.1. 

# Copyright (c) 1997 Regents of the University of California. 
# All rights reserved. 
# Redistribution and use in source and binary forms, with or without 
# modification, are permitted provided that the following conditions 
# are met: 
# 1. Redistributions of source code must retain the above copyright 
# notice, this list of conditions and the following disclaimer. 
# 2. Redistributions in binary form must reproduce the above 
# copyright notice, this list of conditions and the following 
# disclaimer in the documentation and/or other materials provided 
# with the distribution. 
# 3. All advertising materials mentioning features or use of this 
# software must display the following acknowledgement: This product 
# includes software developed by the Computer Systems Engineering 
# Group at Lawrence Berkeley Laboratory. 
# 4. Neither the name of the University nor of the Laboratory may 
# be used to endorse or promote products derived from this software 
# without specific prior written permission. 
# 
# THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" ' 
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
# PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR 
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

#$Header: /usr/src/mash/repository/vint/ns-2/tcl/ex/wireless-test. tel, 
# vl.2 1999/04/22 18:53:50 Haldar Exp $ 
# 
# 

# Default Script Options 
# 

set dir [pwd] 
catch "cd /ns-allinone-2.lb6/ns-2.lb6/simulation" 
source fgmm.tcl ;# hannan files 
source fgmmmisc.tcl ;# hannan files 
catch "cd $dir" 

Class Test/WirelessRIO - superclass RIOTest 
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set opt(chan) 
set opt(prop) 
set opt(netif) 
set opt(mac) 

Channel/WirelessChannel 
Propagation/TwoRayGround 
Phy/WirelessPhy 
Mac/802_11 

# three different queue schemes (FIFO, RED/RIO and PQ) 
#set opt(ifq) 
#set opt(ifq) 
set opt(ifq) 
set opt(11) 
set opt(ant) 
set opt(x) 
set opt(y) 

Queue/DropTail/PriQueue 
Queue/RIO/PRIO 
Queue/DropTail/PinoutQueue 
LL 
Antenna/OmniAntenna 
40000 ;# X dimension of the topography 
40000 ;# Y dimension of the topography 

# cp is traffic file and sc is movement file 
set opt(cp) 
set opt(sc) 
set opt(ifqlen) 
set opt(seed) 
set opt(start) 
set opt(stop) 
set opt(tr) 
set opt(rp) 
set opt(lm) 
set opt(nn) 
set opt(SessionNum) 

"./Ieo-nl0-tcp3-cbrl-diff" 
"./Ieo-10np0stop2000-v20-40kmx40km-l" 
50    ;# max packets the queue can hold 
0.0 
0.0 
2000.0;# simulation time 
out-test.tr ;# output trace file 

routing protocol script   > 
log movement 

dsr 
"off - 
10 
4 

# 
# 
# number of nodes 
# number of traffic sessions 

set AgentTrace 
set RouterTrace 
set MacTrace 
LL set mindelay_ 
LL set delay_ 
LL set bandwidth_ 
LL set off_prune_ 
LL set off_CtrMcast_ 
Agent/Null set sport_ 
Agent/Null set dport_ 
Agent/CBR set sport_ 
Agent/CBR set dport_ 
Agent/TCPSink set sport_ 
Agent/TCPSink set dport_ 
Agent/TCP set sport_ 
Agent/TCP set dport_ 

ON 
ON 
ON 
50us 
25us 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

# not used 
# not used 
# not used 

#Queue/RIO/PRIO set Prefer_Routing_Protocols   1 
#Queue/DropTail/PriQueue set Prefer_Routing_Protocols   1 

# unity gain, omni-directional antennas 
# set up the antennas to be centered in the node and 10 meters above it 
Antenna/OmniAntenna set X_ 0 
Antenna/OmniAntenna set Y_ 0 
# average height of ship antenna 
Antenna/OmniAntenna set Z_ 10 
Antenna/OmniAntenna set Gt_ 1.0 
Antenna/OmniAntenna set Gr  1.0 

# Initialize the SharedMedia interface with parameters to make 
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# it work like the 914MHz Lucent WaveLAN DSSS radio interface 
Phy/WirelessPhy set CPThresh_ 10.0 
# change to adapt to ranges of 10km 
Phy/WirelessPhy set CSThresh_ 1.0e-19 
Phy/WirelessPhy set RXThresh_ 5.Oe-11 
Phy/WirelessPhy set Rb_ 2*le6 
# change Pt power to 50W 
Phy/WirelessPhy set Pt_ 50 
Phy/WirelessPhy set freg_ 914e+6 
Phy/WirelessPhy set L_ 1.0 

Node/MobileNode instproc getq {i} { 
$self instvar ifq_ 
return $ifg_($i) 

} 
Test/WirelessRIO instproc usage { argvO }  { 

puts "Usage: $argv0" 
puts "\tmandatory arguments:" 
puts "\t\t\[-x MAXX\] \[-y MAXY\]" 
puts "\toptional arguments:" 
puts "\t\t\[-cp conn pattern\] \[-sc scenario\] \[-nn nodes\]" 
puts "\t\t\[-seed seed\] \[-stop sec\] \[-tr tracefile\]\n" 

} 
Test/WirelessRIO instproc create-god { nodes } { 

global ns_ god_ tracefd 
set god_ [new God] 
$god_ num_nodes $nodes 

} 
Test/WirelessRIO instproc log-movement {} { 
global logtimer ns_ ns env 
set ns $ns_ 
catch "source /ns-allinone-2.lb6/ns-2.lb6/tcl/mobility/timer.tcl" 
Class LogTimer -superclass Timer 
LogTimer instproc timeout {} { 
global opt node_; 
for {set i 0} {$i < $opt(nn)} {incr i} { 

$node_($ i) log-movement 
} 

$self sched 0.1 
} 

set logtimer [new LogTimer] 
$logtimer sched 0.1 

} 

# Main Program 
# = = = = = = === = = = === = = === = = = = = = = = =: = = = = = = =: = = = = = = = = = = =: = = = = =: = = = = = = = = = = = = = = = = 
Test/WirelessRIO instproc run {} { 

global opt arge argv env 
global ns_ god_ tracefd topo chan prop node_ 
$self getopt $argc $argv 
set opt(vstarttime) [expr $opt(start)+20] 
$self instvar nf f 

# 
# Source External TCL Scripts 
# 
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catch "source /ns-allinone-2.lb6/ns-2.lb6/tcl/lib/ns-mobilenode.tcl" 
if { $opt(rp) !="" } { 
catch "source /ns-allinone-2.lb6/ns-2.lb6/tcl/mobility/$opt(rp).tcl" 
} 
catch "source /ns-allinone-2.lb6/ns-2.Ib6/tcl/lib/ns-cmutrace.tcl" 
# do the get opt again in case the routing protocol file added some 
# more options to look for 

$self getopt $argc $argv 
if { $opt(x) ===== 0 | J $opt(y) == 0 } { 

usage $argvO 
exit 1 

} 
if {$opt(seed) > 0} { 

puts "Seeding Random number generator with $opt(seed)\n" 
ns-random $opt(seed) 

} 
# 
# Initialize Global Variables 
# 

set ns_ [new Simulator] 
set chan    [new $opt(chan)] 
set prop    [new $opt(prop)] 
set topo    [new Topography] 
set tracefd [open $opt(tr) w] 
set nf [open nam-out-test.nam w] 
$ns_ namtrace-all-wireless $nf $opt(x) $opt(y) 
$ns_ trace-all $tracefd 
$topo load_flatgrid $opt(x) $opt(y) 
$prop topography $topo 

# 
# Create God 
# 

$self create-god $opt(nn) 
# 
# log the mobile nodes movements if desired 
# 

if { $opt(lm) == "on" } { 
$self log-movement 

} 
# 
# Create the specified number of nodes $opt(nn) and "attach" them 
# to the channel. 
# Each routing protocol script is expected to have defined a proc 
# create-mobile-node that builds a mobile node and inserts it into the 
# array global $node_($i) 
# 

if { [string compare $opt(rp) "dsr"] == 0} { 
for {set i 0} {$i < $opt(nn) } {incr i} { 

dsr-create-mobile-node $i 
} 

} elseif { [string compare $opt(rp) "dsdv"] == 0} { 
for {set i 0} {$i < $opt(nn) } {incr i} { 

dsdv-create-mobile-node $i 
} 

} 
ttenable node trace in nam 
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for {set i 0} {$i < $opt(nn)} {incr i} { 
$node_($i) namattach $nf 

# 20 defines the node size in nam, must adjust it according to your 
scenario 

$ns_ initial_node_pos $node_($i) 20 
} 

# 
# Source the Connection and Movement scripts 
# 

if { $opt(cp) == "" } { 
puts "*** NOTE: no connection pattern specified." 
set opt(cp) "none" 

} else { 
puts "Loading connection pattern..." 
source $opt(cp) 

} 
if { $opt(sc) == "" } { 

puts "*** NOTE: no scenario file specified." 
set opt(sc) "none" 

} else { 
puts "Loading scenario file..." 
source $opt(sc) 
puts "-Load complete..." 

} 
# 
# Tell all the nodes when the simulation ends 
# 

for {set i..} {$i < $opt(nn) } {incr i} { 
$ns_ at [expr $opt(stop)+0.000000001] "$node_($i) reset"; 

} 
$ns_ at  [expr $opt(stop)+0.01]  "puts \"NS EXITING...\"  ;  $ns_ 

halt" 
$ns_ at $opt(stop) "$self stop" 

# information to be inserted in the output trace file 
puts $tracefd "M 0.0 nn $opt(nn) x $opt(x) y $opt(y) rp $opt(rp)" 
puts $tracefd "M 0.0 sc $opt(sc) cp $opt(cp) seed $opt(seed)" 
puts $tracefd "M 0.0 prop $opt(prop) ant $opt(ant)" 

# set the rioq parameters at each node 
for { set i 0} {$i < $opt(nn)} {incr i} { 

set riog_($i) [$node_($i) getq 0] 
$rioq_($i) set limit_ 50 
$riog_($i) set in_minthresh_ 20 
$rioq_($i) set in_maxthresh_ 35 
$rioq_($i) set in_linterm_ 500 
$riog__($i) set out_minthresh_ 0 
$rioq_($i) set out_maxthresh_ 3 
$rioq_($i) set out_linter_ 1 

} 
puts "Starting Simulation..." 
$ns_ run 

} 
global ourrun 
set ourrun [new Test/WirelessRIO] 
$ourrun run 
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APPENDIX B. OUTPUT TRACE FILE 

This appendix contains an example of an output trace file generated by the NS2 

simulator. Only the initial part of the output trace file is shown. The user can select the 

granularity of each trace file. In this case the routing (RTR) and the application (AGT) 

layers' were monitored. The user must then parse this output file using either Linux shell 

scripts or Perl scripts to collect the required statistics. 

M 0.0 nn 10 x 40000 y 40000 rp dsr 
M 0.0 sc ./Ieo-10np0stop2000-v20-40kmx40km-l 
cp ./Ieo-nl0-tcp3-cbrl-diff seed 0.0 
M 0.0 prop Propagation/TwoRayGround ant Antenna/OmniAntenna 
s 6.989893944 _2_ AGT   0 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[0 0] 0 2 
r 6.989893944 _2_ RTR   0 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[0 0] 0 2 
s 6.998200635 _2_ RTR   1 DSR 24 [0 0 0 0]   [2:255 4:255 32 
0] 1 [1 1] [0 10 0->0] [0 0 0 0->0] 
r 6.998666865 _1_ RTR  — 1 DSR 24 [0 ffffffff 2 800]   [2:255 
4:255 32 0] 1 [1 1] [0 10 0->0] [0 0 0 0->0] 
r 6.998688330 _7_ RTR   1 DSR 24 [0 ffffffff 2 800]   [2:255 
4:255 32 0] 1 [1 1] [0 10 0->0] [0 0 0 0->0] 
s 7.034132271 _2_ RTR   2 DSR 24 [0 0 0 0]   [2:255 4:255 32 
0] 1 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.034598501 _1_ RTR — 2 DSR 24 [0 ffffffff 2 800]   [2:255 
4:255 32 0] 1 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.034619966 _7_ RTR   2 DSR 24 [0 ffffffff 2 800]   [2:255 
4:255 32 0] 1 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
f 7.035446229 _1_ RTR  — 2 DSR 32 [0 ffffffff 2 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.035944459 _2_ RTR   2 DSR 32 [0 ffffffff 1 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.035967004 _7_ RTR   2 DSR 32 [0 ffffffff 1 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.035968006 _6_ RTR  — 2 DSR 32 [0 ffffffff 1 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.035969597 _5_ RTR — 2 DSR 32 [0 ffffffff 1 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.035971520 _4_ RTR — 2 DSR 32 [0 ffffffff 1 800]  [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
f 7.036488954 _5_ RTR  — 2 DSR 44 [0 ffffffff 1 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0-: 0] 
r 7.037042409 _6_ RTR   2 DSR 44 [0 ffffffff 5 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->.1] 
r 7.037046517 _8_ RTR — 2 DSR 44 [0 ffff: fff 5 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->C] 
r 7.037047930 _4_ RTR   2 DSR 44 [0 ffffffff 5 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->0I 
r 7.037056252 _3_ RTR   2 DSR 44 [0 ffffffff 5 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
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r 7.037060323 _1_ RTR   2 DSR 44 [0 ffffffff 5 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.037062157 _9_ RTR    2 DSR 44 [) ffffffff 5 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
s 7.039747103 _4_ RTR    4 DSR 52 [J 0 0 0]   [4:255 2:255 255 
5] 4 [0 2] [12 4 2->4] [0 0 0 0->0] 
f 7.042053983 _3_ RTR — 2 DSR 60 [0 ffffffff 5 800]   [2:255 
4:255 32 0] 4 [1 2] [0 2 0 0->0] [0 3 0 0->0] 
f 7.042389806 _7_ RTR  — 2 DSR 32 [0 ffffffff 2 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.042687931 _5_ RTR — 4 DSR 52 [db 5 4 800] —  [4:255 2:255 
255 5] 4 [0 2] [12 4 2->4] [0 0 0 5->0] 
f 7.042687931 _5_ RTR — 4 DSR 57    [db 5 4 800]   [4:255 2:255 
255 1] 4 [0 2] [12 4 2->4] [0 0 0 0->0] 
f 7.043051990 _6_ RTR  — 2 DSR 44 [0 ffffffff 1 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.043869840 _5_ RTR  — 2 DSR 44   [0 ffffffff 6 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] '0 0 0 0->0] 
r 7.043877643 _9_ RTR  — 2 DSR 44 [0 ffffffff 6 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
f 7.043935334 _9_ RTR    2 DSR 60 [0 ffffffff 5 800]   [2:255 
4:255 32 0] 4 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
s 7.044807167 _4_ RTR   3 DSR 44 [0 0 0 0]   [4:255 2:255 255 
1] 3 [0 2] [12 3 2->4] [0 0 0 0->0] 
r 7.045048792 _0_ RTR    2 DSR 32 [0 ffffffff 7 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.045051573 _2_ RTR    2 DSF 32 [0 ffffffff 7 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0" [0 0 0 0->0] 
r 7.045052653 _1_ RTR    2 DST 32 [0 ffffffff 7 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->0  [0 0 0 0->0] 
r 7.045057272 _9_ RTR   2 D£'. 32 [0 ffffffff 7 800]   [2:255 
4:255 32 0] 2 [1 2] [0 2 0 0->C] [0 0 0 0->0] 
r 7.045800801 _0_ RTR    2 DfR 60 [0 ffffffff 9 800]   [2:255 
4:255 32 0] 4 [1 2] [0 2 0 0-><>] [0 0 0 0->0] 
f 7.046993129 _8_ RTR   2 DSR 60 [0 ffffffff 5 800]   [2:255 
4:255 32 0] 4 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
f 7.047149434 _0_ RTR  — 2 E3R 44 [0 ffffffff 7 800]  [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.047613655 _3_ RTR  — 2 DSR 60 [0 ffffffff 8 800]   [2:255 
4:255 32 0] 4 [1 2] [0 2 0 0-:-0] [0 0 0 0->0] 
r 7.047614691 _5_ RTR   2 DSR 60 [0 ffffffff 8 800]   [2:255 
4:255 32 0] 4 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.047620512 _4_ RTR    2 DSR 60 [0 ffffffff 8 800]   [2:255 
4:255 32 0] 4 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.047624406 _6_ RTR   2 DSR 60 [0 ffffffff 8 800]   [2:255 
4:255 32 0] 4 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.048966003 _9_ RTR — 2 DSR 44 [0 ffffffff 0 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 f->0] [0 0 0 0->0] 
r 7.048978803 _6_ RTR   ' DSR 44 [0 ffffffff 0 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 ;->0] [0 0 0 0->0] 
r 7.048981387 _7_ RTR — 2  DSR 44 [0 ffffffff 0 800]   [2:255 
4:255 32 0] 3 [1 2] [0 2 0 0->0] [0 0 0 0->0] 
r 7.052771176 _1_ RTR    4 DSR 52 [db 1 5 800]   [4:255 2:255 
255 1] 4 [0 2] [12 4 2->4  [0 0 0 0->0] 
f 7.052771176 _1_ RTR  — 4 DSR 52 [db 1 5 800]   [4:255 2:255 
255 2] 4 [0 2] [12 4 2->4] [0 0 0 0->0] 
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s 7.054209633 _4_ RTR   5 DSR 60 [0 0 0 0]   [4:255 2:255 255 
8] 5 [0 2] [12 5 2->4] [0 0 0 0->0] 
r 7.055404921 _1_ RTR   3 DSR 44 [db 1 4 800]   [4:255 2:255 
255 1] 3 [0 2] [12 3 2->4] [0 0 0 0->0] 
f 7.055404921 _1_ RTR  3 DSR 44 [db 1 4 800]   [4:255 2:255 
255 2] 3 [0 2] [12 3 2->4] [0 0 0 0->0] 
D 7.055404921 _1_ IFQ  ARP 4 DSR 52 [db 1 1 800]   [4:255 2:255 
255 2] 0 [0 0] [10 4 2->2] [0 0 0 0->0] 
r 7.061111029 _2_ RTR   3 DSR 44 [db 2 1 800]   [4:255 2:255 
255 2] 3 [0 2] [12 3 2->4] [0 0 0 0->0] 
s 7.061111029 _2_ RTR  — 0 tcp 1492 [0 0 0 0]   [2:1 4:0 32 1] 
[0 0] 0 2 
r 7.068290718 _1_ RTR   0 tcp 1492 [db 1 2 800]   [2:1 4:0 32 
1] [0 0] 1 2 
f 7.068290718 _1_ RTR  0 tcp 1492 [db 1 2 800]   [2:1 4:0 32 
4] [0 0] 1 2 
r 7.075391591 _4_ RTR  — 0 tcp 1492 [db 4 1 800]   [2:1 4:0 32 
4] [0 0] 2 2 
r 7.075391591 _4_ AGT   0 tcp 1492 [db 4 1 800]   [2:1 4:0 32 
4] [0 0] 2 2 
s   7.075391591  _4_ AGT      6  ack  40   [0   0   0   0]       [4:0   2:1  32   0]    [0 
0]   0   2 
r 7.075391591 _4_ RTR   6 ack 40 [0 0 0 0]   [4:0 2:1 32 0] [0 
0] 0 2 
s 7.075391591 _4_ RTR   6 ack 72 [0 0 0 0]   [4:0 2:1 32 1] [0 
0] 0 2 
r 7.077232463 _1_ RTR   6 ack 72 [db 1 4 800]   [4:0 2:1 32 1] 
[0 0] 12 
f 7.077232463 _1_ RTR — 6 ack 72 [db 1 4 800]   [4:0 2:1 32 2] 
[0 0] 1 2 
r 7.078572152 _2_ RTR   6 ack 72 [db 2 1 800]   [4:0 2:1 32 2] 
[0 0] 2 2 
r 7.078572152 _2_ AGT   6 ack 72 [db 2 1 800]   [4:0 2:1 32 2] 
[0 0] 2 2 
s 7.078572152 _2_ AGT   7 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[1 0] 0 2 
r 7.078572152 _2_ RTR   7 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[1 0] 0 2 
s 7.078572152 _2_ AGT   8 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[2 0] 0 2 
r 7.078572152 _2_ RTR  — 8 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[2 0] 0 2 
s 7.078572152 _2_ RTR  7 tcp 1492 [0 0 0 0]   [2:1 4:0 32 1] 
[1 0] 0 2 
s 7.078572152 _2_ RTR  8 tcp 1492 [0 0 0 0]  — [2:1 4:0 32 1] 
[2 0] 0 2 
r 7.085971841 _1_ RTR  7 tcp 1492 [db 1 2 800]   [2:1 4:0 32 
1] [1 0] 1 2 
f 7.085971841 _1_ RTR  — 7 tcp 1492 [db 1 2 800]   [2:1 4:0 32 
4] [1 0] 1 2 
r 7.093072714 _4_ RTR — 7 tcp 1492 [db 4 1 800]   [2:1 4:0 32 
4] [1 0] 2 2 
r 7.093072714 _4_ AGT   7 tcp 1492 [db 4 1 800]   [2:1 4:0 32 
4] [1 0] 2 2 
s   7.093072714  _4_ AGT      9   ack  40   [0   0   0   0]       [4:0   2:1  32   0]    [1 
0]   0   2 
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r 7.093072714 _4_ RTR    9 ack 40 [0 0 0 0]   [4:0 2:1 32 0] [1 
0] 0 2 
s 7.093072714 _4_ RTR    9 ack 72 [0 0 0 0]   [4:0 2:1 32 1] [1 
0] 0 2 
r 7.094893587 _1_ RTR    9 ack 72 [db 1 4 800]   [4:0 2:1 32 1] 
[1 0] 1 2 
f 7.094893587 _1_ RTR    9 ack 72 [db 1 4 800]   [4:0 2:1 32 2] 
[1 0] 1 2 
r 7.096433276 _2_ RTR    9 ack 72 [db 2 1 800]   [4:0 2:1 32 2] 
[1 0] 2 2 
r 7.096433276 _2_ AGT    9 ack 72 [db 2 1 800]   [4:0 2:1 32 2] 
[1 0] 2 2 
s 7.096433276 _2_ AGT    10 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[3 0] 0 2 
r 7.096433276 _2_ RTR    10 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[3 0] 0 2 
s 7.096433276 _2_ AGT — 11 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[4 0] 0 2 
r 7.096433276 _2_ RTR  11 tcp 1460 [0 0 0 0]   [2:1 4:0 32 0] 
[4 0] 0 2 
s 7.096433276 _2_ RTR   10 tcp 1492 [0 0 0 0]   [2:1 4:0 32 1] 
[3 0] 0 2 
s 7.096433276 _2_ RTR    11 tcp 1492 [0 0 0 0]   [2:1 4:0 32 1] 
[4 0] 0 2 
r 7.103792965 _1_ RTR    8 tcp 1492 [db 1 2 800]   [2:1 4:0 32 
1] [2 0] 1 2 
f 7.103792965 _1_ RTR    8 tcp 1492 [db 1 2 800]   [2:1 4:0 32 
4] [2 0] 1 2 
r 7.110893837 _4_ RTR    8 tcp 1492 [db 4 1 800]   [2:1 4:0 32 
4] [2 0] 2 2 
r 7.110893837 _4_ AGT    8 tcp 1492 [db 4 1 800]   [2:1 4:0 32 
4] [2 0] 2 2 
s 7.110893837 _4_ AGT   12 ack 40 [0 0 0 0]   [4:0 2:1 32 0] 
[2 0] 0 2 
r  7.110893837  _4_ RTR         12   ack  40   [0   0   0   0]       [4:0   2:1   32   0] 
[2   0]   0   2 
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APPENDIX C. TCL NODE MOVEMENT FILE (LARGE RANGES) 

This appendix contains an example of a node movement file used in one of the 

simulations. A command line input into NS2 generated the node movement file based 

upon specific parameters established by the user. As mentioned in Chapter VI, the 

transmission range of each node was expanded to 10 km in order to allow larger 

scenarios. The command line below was used to generate the movement file showed in 

this appendix: 

./setdest -n 10 -p0 -s 20 -t 2000 -x 40000 -y 40000 > Ieo-10np0stop2000-v20- 
40kmx40km-l 

# 
# nodes 
# 40000 
# 
$node. 
$node_ 
$node. 
$node_ 
$node. 
$node. 
$node_ 
$node. 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node, 
$node_ 
$node. 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node_ 
$node. 
$ns_ at 0 

10, 
00 

pause: 0.00, max speed: 20.00 max x = 40000.00, max y: 

.(0 

.(0 

.(0 

.(1 

.(1 

.(1 

.(2 

.(2 

.(2 

.(3 

.(3 

.(3 

.(4 

.(4 

.(4 

.(5 

.(5 

.(5 

.(6 

.(6 

.(6 

.(7 

.(7 

.(7 

.(8 

.(8 

.(8 

.(9 

.(9 

.(9 

set X_ 
set Y_ 
set Z_ 
set X_ 
set Y_ 
set Z_ 
set X_ 
set Y_ 
set Z_ 
set X_ 
set Y_ 
set 
set 
set 
set 
set 
set 
set 
set X_ 
set Y_ 
set 
set 
set 
set 
set 
set 
set 
set 
set 
set 

Z_ 
X_ 
Y_ 
Z_ 
X_ 
Y_ 
Z_ 

Z_ 
X_ 
Y_ 
Z_ 
X_ 
Y_ 
Z_ 
X_ 
Y_ 
Z_ 

22502.137003443873 
33416.636842130094 
0.000000000000 
33415.435324249636 
13221.524307375223 
0.000000000000 
14159.045784060874 
11082.505271689157 
0.000000000000 
23666.111110236248 
36329.450734058104 
0.000000000000 
29078.519542600196 
2677.978278312096 
0.000000000000 
8780.925966699409 
21022.730105854444 
0.000000000000 
9024.907745421819 
1624.485310837787 
0.000000000000 
22724.620690638527 
12699.967721132738 
0.000000000000 
8357.500344240176 
24508.293057666247 
0.000000000000 
30881.441937471234 
24394.670474170449 
0.000000000000 

,000000000000 "$node_(0) setdest 1226.681024342604 
16827.977213505870 13.906521160309' 
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$ns_ at 0.000000000000 "$node_(l) setdest 13802.307309693548 
15378.966263325747 17.143 000678718" 
$ns_ at 0.000000000000 "$node_(2) setdest 4824.844842906078 
11167.279002210789 4.229100031662" 
$ns_ at 0.000000000000 "$node_(3) setdest 36968.471777056322 
9105.189781670031 15.462334302119" 
$ns_ at 0.000000000000 n$node_(4) setdest 30905.258854572676 
24685.596219211533 5.407839093727" 
$ns_ at 0.000000000000 "$node_(5) setdest 19103.306148637959 
29266.457104100376 0.672287289331" 
$ns_ at 0.000000000000 "$node_(6) setdest 38264.944755438468 
3 8926.538598963089 19.167133 652137" 
$ns_ at 0.000000000000 "$node_(7) setdest 4030.616937006699 
22578.863 846147186 1.482341113181" 
$ns_ at 0.000000000000 "$node_(8) setdest 27414.181094759460 
3 0141.683941113301 15.641012514880" 
$ns_ at 0.000000000000 "$node_(9) setdest 36994.702924416037 
9972.083479557983 0.403524888846" 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 0 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
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0 1 16777215 
0 2 16777215 
0 3 1 
0 4 16777215 
0 5 16777215 
0 6 16777215 
0 7 16777215 
0 8 16777215 
0 9 16777215 
1 2 16777215 
1 3 16777215 
1 4 16777215 
1 5 16777215 
1 6 16777215 
1 7 16777215 
1 8 16777215 
1 9 16777215 
2 3 16777215 
2 4 16777215 
2 5 16777215 
2 6 16777215 
2 7 1 
2 8 16777215 
2 9 16777215 
3 4 16777215 
3 5 16777215 
3 6 16777215 
3 7 16777215 
3 8 16777215 
3 9 16777215 
4 5 16777215 
4 6 16777215 
4 7 16777215 
4 8 16777215 
4 9 16777215 
5 6 16777215 
5 7 16777215 
5 8 1 



9 16777215 
7 16777215 
8 16777215 
9 16777215 
8 16777215 
9 16777215 
9 16777215 

'$god_ 
'$god_ 
'$god_ 
'$god_ 
"$god_ 
" $god_ 
" $god_ 
" $god_ 
" $god_ 
" $god_ 
" $god_ 
" $god_ 
" $god_ 
"$god_ 
"$god_ 
" $god_ 
" $god_ 
" $god_ 
"$god_ 
" $god_ 

$god_ set-dist 5 
$god_ set-dist 6 
$god_ set-dist 6 
$god_ set-dist 6 
$god_ set-dist 7 
$god_ set-dist 7 
$god_ set-dist 8 
$ns_ at 36.628104672255 
$ns_ at 36.628104672255 
$ns_ at 44.968810103258 
$ns_ at 44.968810103258 
$ns_ at 44.968810103258 
$ns_ at 176.788288614934 
$ns_ at 176.788288614934 
$ns_ at 176.788288614934 
$ns_ at 176.788288614934 
$ns_ at 233.224928518294 
$ns_ at 233.224928518294 
$ns_ at 233.224928518294 
$ns_ at 233.224928518294 
$ns_ at 263.468355592235 
$ns_ at 263.468355592235 
$ns_ at 263.468355592235 
$ns_ at 263.468355592235 
$ns_ at 398.974361211903 
$ns_ at 398.974361211903 
$ns_ at 398.974361211903 
$ns_ at 429.219521220472 "$god. 
$ns_ at 429.219521220472 "$god_ 
$ns_ at 429.219521220472 "$god. 
$ns_ at 497.477763260797 "$god. 
$ns_ at 497.477763260797 "$god. 
$ns_ at 497.477763260797 "$god. 
$ns_ at 497.477763260797 "$god. 
$ns_ at 497.477763260797 "$god. 
$ns_ at 497.477763260797 "$god. 
$ns_ at 532.906139678420 "$god. 
$ns_ at 532.906139678420 "$god. 
$ns_ at 532.906139678420 "$god. 
$ns_ at 532.906139678420 "$god. 
$ns_ at 535.910980047556 "$god. 
$ns_ at 535.910980047556 "$god_ 
$ns_ at 585.150684797371 "$god. 
$ns_ at 589.488598839237 "$god. 
$ns_ at 646.517128127917 "$god. 
$ns_ at 646.517128127917 "$god_ 
$ns_ at 646.517128127917 "$god. 
$ns_ at 646.517128127917 "$god. 
$ns_ at 646.517128127917 "$god. 
$ns_ at 646.517128127917 "$god. 
$ns_ at 773.638869589614 "$god. 
$ns_ at 783.328155691574 "$god. 
$ns_ at 783.328155691574 "$god. 
$ns_ at 783.328155691574 "$god. 
$ns_ at 783.328155691574 "$god. 
$ns_ at 891.792272257138 "$god. 

set-dist 
set-dist 
set-dist 
set-dist 
set-dist 
set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 
set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 
set-dist 
set-dist 

, set-dist 
set-dist 

. set-dist 

. set-dist 
set-dist 

. set-dist 

. set-dist 
set-dist 

. set-dist 

. set-dist 
set-dist 

. set-dist 

. set-dist 

. set-dist 
set-dist 

. set-dist 
set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 

. set-dist 
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2 6 1" 
6 7 2" 
12 2" 
16 3" 
17 1" 
14 1" 
2 4 3" 
4 6 4" 
4 7 2" 
0 5 2" 
0 8 1" 
3 5 3" 
3 8 2" 
0 9 2" 
3 9 1" 
5 9 4" 
8 9 3" 
1 6 2". 
4 6 3" 
6 7 1" 
12 3" 
2 4 4" 
2 7 2" 
0 3 16777215" 
0 9 16777215" 
3 5 16777215" 
3 8 16777215" 
5 9 16777215" 
8 9 16777215" 
1 4 16777215" 
2 4 16777215" 
4 6 16777215" 
4 7 16777215" 
12 2" 
16 1" 
0 5 1" 
5 8 2" 
0 3 2" 
0 9 3" 
3 5 3" 
3 8 1" 
5 9 4" 
8 9 2" 
12 1" 
14 2" 
2 4 3" 
4 6 2" 
4 7 1" 
2 6 2" 



$ns_ at 912. 779175509088 
$ns_ at 912. 779175509088 
$ns_ at 912. 779175509088 
$ns_ at 912. 779175509088 
$ns_ at 912. 779175509088 
$ns_ at 912. 779175509088 
$ns_ at 916. 508318469820 
$ns_ at 964. 878461047888 
$ns_ at 964. 878461047888 
$ns_ at 964. 878461047888 
$ns_ at 964. 878461047888 
$ns_ at 964. 878461047888 
$ns_ at 964. 878461047888 
$ns_ at 964. 878461047888 
$ns_ at 964. 878461.047888 
$ns_ at 964. 878461047888 
$ns_ at 964. 878461047888 
$ns_ at 1051 .246752375747 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1067 .692132184842 
$ns_ at 1075 .017963804004 
$ns_ at 1075 .017963804004 
$ns_ at 1075 .017963804004 
$ns_ at 1075 .017963804004 
$ns_ at 1075 .017963804004 
$ns_ at 1075 .017963804004 
$ns_ at 1075 .017963804004 
$ns_ at 1075 .017963804004 
$ns_ at 1139 .232074304606 
$ns_ at 1139 .232074304606 
$ns_ at 1139 .232074304606 
$ns_ at 1139 .232074304606 
$ns_ at 1139 .232074304606 
$ns_ at 1139 .232074304606 
$ns_ at 1139 .232074304606 
$ns_ at 1139 232074304606 
$ns_ at 1139 232074304606 

"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
n$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
"$god_ set-dist 
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0 3 16777215" 
0 8 16777215" 
0 9 16777215" 
3 5 16777215" 
5 8 16777215" 
5 9 16777215" 
8 9 1" 
0 1 2" 
0 2 3" 
0 4 4" 
0 6 3" 
0 7 3" 
1 5 1" 
2 5 2" 
4 5 3" 
5 6 2" 
5 7 2" 
3 8 2" 
0 3 4" 
0 8 6" 
0 9 5" 
1 3 2" 
1 8 4" 
1 9 3" 
2 3 3" 
2 8 5" 
2 9 4" 
3 4 3" 
3 5 3" 
3 6 1" 
3 7 2" 
4 8 5" 
4 9 4" 
5 8 5" 
5 9 4" 
6 8 3" 
6 9 2" 
7 8 4" 
7 9 3" 
0 1 1" 
0 2 2" 
0 3 3" 
0 4 3" 
0 6 2" 
0 7 2" 
0 8 5" 
0 9 4" 
0 8 4" 
0 9 3" 
1 8 3" 
1 9 2" 
2 8 4" 
2 9 3" 
4 8 4" 
4 9 3" 
5 8 4" 



$ns_ at 1139.232074304606 "$god_ set-dist 5 9 3" 
$ns_ at 1139.232074304606 "$god_ set-dist 6 8 2" 
$ns_ at 1139.232074304606 "$god_ set-dist 6 9 1" 
$ns_ at 1139.232074304606 "$god_ set-dist 7 8 3" 
$ns_ at 1139.232074304606 "$god_ set-dist 7 9 2" 
$ns_ at 1150.990470512652 "$node_(l) setdest 4085.614384907528 
26920.970763950318 10.377826797404" 
$ns_ at 1174.117702349961 "$god_ set-dist 0 3 4" 
$ns_ at 1174.117702349961 "$god_ set-dist 0 6 3" 
$ns_ at 1174.117702349961 "$god_ set-dist 0 8 5" 
$ns_ at 1174.117702349961 "$god_ set-dist 0 9 4" 
$ns_ at 1174.117702349961 "$god_ set-dist 13 3" 
$ns_ at 1174.117702349961 "$god_ set-dist 16 2" 
$ns_ at 1174.117702349961 "$god_ set-dist 18 4" 
$ns_ at 1174.117702349961 "$god_ set-dist 19 3" 
$ns_ at 1174.117702349961 "$god_ set-dist 2 3 4" 
$ns_ at 1174.117702349961 "$god_ set-dist 2 6 3" 
$ns_ at 1174.117702349961 "$god_ set-dist 2 8 5" 
$ns_ at 1174.117702349961 "$god_ set-dist 2 9 4" 
$ns_ at 1174.117702349961 "$god_.set-dist 3 5 4" 
$ns_ at 1174.117702349961 "$god_ set-dist 5 6 3" 
$ns_ at 1174.117702349961 "$god_ set-dist 5 8 5" 
$ns_ at 1174.117702349961 "$god_ set-dist 5 9 4" 
$ns_ at 1242.646280867531 "$god_ set-dist 3 4 1" 
$ns_ at 1242.646280867531 "$god_ set-dist 4 8 3" 
$ns_ at 1242.646280867531 "$god_ set-dist 4 9 2" 
$ns_ at 1263.703445200898 "$god_ set-dist 0 8 4" 
$ns_ at 1263.703445200898 "$god_ set-dist 18 3" 
$ns_ at 1263.703445200898 "$god_ set-dist 2 8 4" 
$ns_ at 1263.703445200898 "$god_ set-dist 5 8 4" 
$ns_ at 1263.703445200898 "$god_ set-dist 6 8 1" 
$ns_ at 1263.703445200898 "$god_ set-dist 7 8 2" 
$ns_ at 1270.499211908984 "$node_(8) setdest 269.986353926073 
17660.650674094795 11.277947588824" 
$ns_ at 1388.613684494774 "$god_ set-dist 0 6 5"' 
$ns_ at 1388.613684494774 "$god_ set-dist 0 8 6" 
$ns_ at 1388.613684494774 "$god_ set-dist 0 9 5" 
$ns_ at 1388.613684494774 "$god_ set-dist 1 6 4" 
$ns_ at 1388.613684494774 "$god_ set-dist 1 8 5" 
$ns_ at 1388.613684494774 "$god_ set-dist 1 9 4" 
$ns_ at 1388.613684494774 "$god_ set-dist 2 6 5" 
$ns_ at 1388.613684494774 "$god_ set-dist 2 8 6" 
$ns_ at 13 88.613684494774 "$god_ set-dist 2 9 5" 
$ns_ at 1388.613684494774 "$god_ set-dist 5 6 5" 
$ns_ at 13 88.613684494774 "$god_ set-dist 5 8 6" 
$ns_ at 1388.613684494774 "$god_ set-dist 5 9 5" 
$ns_ at 13 88.613684494774 "$god_ set-dist 6 7 3" 
$ns_ at 1388.613684494774 "$god_ set-dist 7 8 4" 
$ns_ at 13 88.613684494774 "$god_ set-dist 7 9 3" 
$ns_ at 1427.856229493271 "$god_ set-dist 0 6 6" 
$ns_ at 1427.856229493271 "$god_ set-dist 16 5" 
$ns_ at 1427.856229493271 "$god_ set-dist 2 6 6" 
$ns_ at 1427.856229493271 "$god_ set-dist 3 6 2" 
$ns_ at 1427.856229493271 "$god_ set-dist 4 6 3" 
$ns_ at 1427.856229493271 "$god_ set-dist 5 6 6" 
$ns_ at 1427.856229493271 "$god_ set-dist 6 7 4" 
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$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 

$ns_ at 1447.621754380096 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 "$god_ set-dist 
$ns_ at 1464.295227738686 "$god_ set-dist 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1464.295227738686 
$ns_ at 1581.567256397830 
$ns_ at 1581.567256397830 
$ns_ at 1581.567256397830 
$ns_ at 1581.567256397830 "$god. 
$ns_ at 1581.567256397830 "$god 
$ns_ at 1581.567256397830 
$ns_ at 1581.567256397830 
$ns_ at 1581.567256397830 
$ns_ at 1581.567256397830 
$ns_ at 1802.672479208529 
$ns_ at 1825.839285268703 
$ns_ at 1863.073268129671 
$ns_ at 1863.073268129671 
$ns_ at 1939.974735722339 

$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 

_ set-dist 
_ set-dist 

$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 
$god_ set-dist 8 
$god_ set-dist 1 
$god_ set-dist 6 
$god_ set-dist 8 
'$node_(0) setdest 

27060.065522786557 19.260632738973" 
$ns_ at 1959.625369305903 "$node_(3) setdest 
18252.105664547144 1.569960117988" 
# Destination Unreachables: 93 
# Route Changes: 195 
# Link Changes: 34 

2 1" 
3 16777215" 
4 16777215" 
6 16777215" 
7 16777215" 
8 16777215" 
9 16777215" 
3 16777215" 
4 16777215" 
6 16777215" 
7 16777215" 
8 16777215" 
9 16777215" 
3 16777215" 
4 16777215" 
6 16777215" 
7 16777215" 
8 16777215" 
9 16777215" 
5 16777215" 
5 16777215" 
6 16777215" 
7 16777215" 
8 16777215" 
9 16777215" 
6 16777215" 
8 16777215" 
9 16777215" 
6 16777215" 
8 16777215" 
9 16777215" 
7 16777215" 
8 16777215" 
9 16777215" 
9 2" 
2 2" 
8 16777215" 
9 16777215" 
16930.270723538084 

26908.922001653675 

# Node 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Route Changes 
45 
35 
36 
33 
33 
37 
44 
27 
53 
47 

Link Changes 
6 

10 
6 
8 
4 
3 

11 
6 
9 
5 

118 



APPENDIX D. TCL TRAFFIC GENERATION WITH CONDITIONING FILE 

This appendix contains an example of a traffic pattern file (with conditioning 

embedded) that was used in one of the simulations. As mentioned in Chapter VI, the 

conditioning is executed in the source nodes. 

# 
# nodes: 10, tcp conn: 3, cbr conn: 1 cbr send rate: 20.0, seed: 0.0 
# 
# 
# 0 connecting to 1 at time 0 
# 
set tcp_(0) [new Agent/TCP/Reno] 
$tcp_(0) set window_ 8 
$tcp_(0) set packetSize_ 1460 
$tcp_(0) set class_ 0 
set difftc(O) [new DiffTC TB 0] 
set meter_ [$difftc(0) getmeter] 
$meter_ tbsize 0 
$difftc(0) attach-conditioner $node_(0) $tcp_(0) 
set sink_(0) [new Agent/TCPSink] 
$ns_ attach-agent $node_(l) $sink_(0) 
$ns_ connect $tcp_(0) $sink_(0) 
set ftp_(0) [$tcp_(0) attach-source FTP] 
$ns_ at 0 "$ftp_(0) start" 
# 
# 0 connecting to 2 at time 0 
# 
set tcp_(l) [new Agent/TCP/Reno] 
$tcp_(l) set window_ 8 
$tcp_(l) set packetSize_ 1460 
$tcp_(l) set class_ 1 
set difftc(l) [new DiffTC TB 0] 
set meter_ [$difftc(l) getmeter] 
$meter_ tbsize 0 
$difftc(l) attach-conditioner $node_(0) $tcp_(l) 
set sink_(l) [new Agent/TCPSink] 
$ns_ attach-agent $node_(2) $sink_(l) 
$ns_ connect $tcp_(l) $sink_(l) 
set ftp_(l) [$tcp_(l) attach-source FTP] 
$ns_ at 0 "$ftp_(l) start" 
# 
# 2 connecting to 3 at time 0 
# 
set tcp_(2) [new Agent/TCP/Reno] 
$tcp_(2) set window_ 8 
$tcp_(2) set packetSize_ 1460 
$tcp_(2) set class_ 2 
set difftc(2) [new DiffTC TB 0] 
set meter_ [$difftc(2) getmeter] 
$meter_ tbsize 0 
$difftc(2) attach-conditioner $node_(2) $tcp_(2) 
set sink_(2) [new Agent/TCPSink] 
$ns_ attach-agent $node_(3) $sink_(2) 
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$ns_ connect $tcp_(2) $sink_(2) 
set ftp_(2) [$tcp_(2) attach-source FTP] 
$ns_ at 0 "$ftp_(2) start" 
# 
# 3 connecting to 4 at time 0 
# 
set udp_(0) [new Agent/UDP] 
$udp_(0) set class_ 3 
set difftccbr(O) [new DiffTC TB 0] 
set meter_ [$difftccbr(3) getmeter] 
$meter_ tbsize 0 
$difftccbr(0) attach-conditioner $node_(3) $udp_(0) 
set null_(0) [new Agent/LossMonitor] 
$ns_ attach-agent $node_(4) $null_(0) 
set cbr_(0) [new Application/Traffic/CBR] 
$cbr_(0) set packetSize_ 1000 
$cbr_(0) set interval_ 0.05 
$cbr_(0) set random_ 1 
#$cbr_(0) set maxpkts_ 80000 
$cbr_(0) attach-agent $udp_(0) 
$ns_ connect $udp_(0) $null_(0) 
$ns_ at 0 "$cbr_(0) start" 
# conditioning - higher target rate for cbr/udp traffic 
$difftccbr(0) AdptPara 1.5Mbps 36000000 
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